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Abstract

Incising is an essential preprocessing method to ensure lumber from difficult-to-treat wood species can achieve chemical
loadings during pressure treatment that will allow commodities to perform in ground contact or critical infrastructure
applications. National Design Specifications in the United States require engineers to include a strength reduction for
incised lumber, but these reductions are based on data collected on 2-in (51-mm) nominal-thickness lumber. Little work
has been done to measure the impact of incising on lumber with a larger cross-section. This exploratory study measured the
effect of incising on modulus of rupture (MOR) and modulus of elasticity (MOE) of nominal 4 by 6-in (102 by 152-mm)
Douglas-fir lumber. Lumber pieces ranked and matched by vibrationally measured MOE were tested edgewise by a four-point
bending test according to ASTM D4761. A total of 48 incised and nonincised test specimens were included in the final
analysis. Incised MOR values were 11.5 percent lower than nonincised pieces (P < 0.05 analysis of variance). MOE values
were 2.5 percent lower for incised pieces compared with nonincised pieces, but the difference was not statistically significant
(P > 0.05). Ranking paired incised and nonincised specimens showed that the divergence between the two categories was
greatest in specimens with lower MOR values. The coefficient of variation for MOR values was high for both incised (32.4%)
and nonincised (26.6%) samples and a more uniform data set would provide better confidence for resolving differences between

them. This work provides a useful preliminary comparison in structural performance of incised and nonincised lumber.

Incising is required in the American Wood Protection
Association standards for preservative treatment of Douglas-
fir and many other thin sapwood species (AWPA 2023). The
process exposes more permeable end grain to fluid flow,
resulting in improved penetration to the depth of the inci-
sion and longer service life (Anderson et al. 1997). There
is, however, no specific incising standard currently. The
original incisors were designed for heavy timbers and used
large, widely spaced teeth since there was little concern
about the final appearance of the treated product. Previous
studies found that for large timbers (>150 to 250 mm)
these low-incision density patterns generally had little
effect on mechanical properties (Luxford and Zimmerman
1921, 1923; Luxford 1926; Rawson 1927; Harkom and
Rochester 1930; Harkom and Alexander 1931; Schrader
1945; Bryant 1953). Although these incisors are still used
for industrial products, the emergence of markets for pre-
servative-treated dimension lumber in Canada and the
western United States led to the development of several
incisor designs that used much finer teeth at much closer
spacings to reduce the visual impact of the process. The
intensity of the patterns led to concerns about the effects
of such a large cross-sectional area being damaged and a
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series of studies were undertaken to more closely define the

effects of incising on flexural properties of the final product.
Most of the recent studies on the impact of incising on

wood strength have evaluated nominal 2-in (38-mm)-thick
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lumber (Perrin 1978; Morrell et al. 1998; Winandy and Her-
nandez 1998; Winandy and Morrell 1998; Winandy et al.
2020, 2021, 2023). These studies led to the inclusion of an
incising design factor (C;) in the National Design Specifica-
tion (NDS) that called for a blanket modulus of rupture
(MOR) reduction for incised wood. Although this was a
simple solution to the problem, it ignored the variations in
incising patterns as well as lumber dimensions. Previous
studies have shown that the impacts of incising can be pre-
dicted by calculating the loss in cross-sectional area for a
given member and incising pattern (Winandy and Hernan-
dez 1998; Hernandez and Winandy 2005; Winandy and
Cheung 2017; Winandy et al. 2020, 2021). This allows a
user to estimate a reduction factor for a given incising pat-
tern on a specific timber size. This is important since incis-
ing is mostly a surface effect that would be mitigated by
increasing dimensions (Winandy et al. 2018). Thus, the
effect of the same incising pattern and depth on a nominal
2-in (38-mm)-thick board would be much greater than on a
nominal 4-in (89-mm) member. This is mitigated slightly
by the increased chemical penetration requirement from
10 mm in lumber <125 mm thick to 13 mm in thicker lum-
ber/timbers, but the overall impact of incising on strength
should decrease with increased dimensions.

The ability to calculate factors for a given incising pat-
tern is attractive, but this requires prior knowledge of the
specific material being used on a project and this informa-
tion may not always be available. The development of an
incising design factor for thicker materials would allow speci-
fiers to require incising for commodities in a specific size
class. The primary objective of this study was to perform a
preliminary assessment of the impact of a single type of incis-
ing pattern on flexural properties of nominal 4 by 6-in (89 by
140-mm)-thick Douglas-fir lumber. A secondary but broader
objective was to evaluate incised material larger in size than
the more intensively studied 2-in-thick lumber (for which
effects have been quantified) but smaller than timber (>5-in
thickness) for which predictive models and NDS agree are
less likely to be affected by incising. This study provides a
preliminary comparison of how well NDS design factors for
incising reflect strength values for nominal 4 by 6-in lumber.

Materials and Methods

One-hundred-ten pieces of recently cut nominal 4 by 6-in
(89 by 140-mm) by 12-ft (3.67-m)-long Douglas-fir lumber
were obtained from a mill near White City, Oregon. The
samples were acoustically tested using a Metriguard E-com-
puter (Metriguard Technogies Inc. Pullman, Washington) to
determine an E-rating so the incised and nonincised popula-
tions would consist of E-matched pairs. The samples were E-
rated without drying to uniform moisture content because of
the need for immediate on-site access to the incisor that was
used in this study. The lumber with the five lowest and five
highest E-ratings were removed from the test. The remaining
100 timbers were sorted into two groups of 50 pieces each
with similar modulus of elasticity (MOE) values. One group
of 50 pieces was incised on a RJH Proto-Mac model RJH-
T16X16-BA (Corvallis, Oregon) incisor to a depth of
11.1 mm and a density of 7,930 incisions/m?. The lumber
was stickered under cover and air dried for about 9 months.

The nominal 4 by 6-in lumber was then tested to failure
edgewise in four-point loading applied at the third point
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using a span-to-depth ratio of 18:1 and a loading rate of
38 mm/min according to the procedures described in ASTM
Standard D4761. Load and deflection were continuously
recorded. The linear portion of the resulting curve was used
to calculate MOE, whereas ultimate load was used to calcu-
late MOR. Failure mode was noted and a 50-mm-long sec-
tion was cut from near the failure zone to determine
moisture content at time of testing and the density of each
specimen. The samples were weighed, then oven dried at
104 C for 24 to 48 hours before being reweighed. The dif-
ference between initial and final mass was used to calculate
moisture content at time of testing. Dimensions of each
specimen were measured and density was calculated using
the oven-dried mass of each piece. These data were used to
ensure that the two populations had similar density values.
A total of 48 incised and 50 nonincised samples was evalu-
ated. Excessive warping on two nonincised samples precluded
testing. As a result, incising effects were only compared on 48
matched samples. The data were subjected to a single-factor
analysis of variance (o = 0.05).

Results and Discussion

Moisture contents of incised and nonincised lumber at
the time of testing averaged 9.32 and 9.18 percent, respec-
tively. Incising was associated with a statistically significant
11.5 percent (P < 0.046) decrease in average MOR over the
entire MOR distribution (Fig. 1). The average difference in
MOE of incised lumber was 2.5 percent less than that of
nonincised lumber, but this difference was not significant.
Incising is known to reduce the strength properties of lum-
ber proportionally to the loss in section due to wood loss
from incisions and damage beneath the wood extending
over 2 mm into wood beneath the incisions (Winandy et al.
2021). This study showed that this level of damage was suffi-
cient to reduce the structural properties of nominal 4 by 6-in
lumber. The original intent was to compare incised-to-
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Figure 1.—(A) Effect of incising on modulus of rupture (MOR)
and (B) modulus of elasticity (MOE) of nominal 4 by 6-in
Douglas-fir timbers. Values represent means of 48 nonincised
and 48 incised samples; error bars represent 1 SD.
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nonincised ratios of MOR or MOE from pre-E matched pairs
from two green (high moisture content) pre-E-rated boards.
After air drying, the incised-to-nonincised ratio of MOE val-
ues for paired incised and nonincised values were extremely
variable, ranging from 0.7 to almost 1.5 when analyzed on
the basis of the E-sorting done on green lumber (Fig. 2). This
disparity suggests that the initial E-sorting was not successful
in parsing E-matched pairs into incised and nonincised popu-
lations. This may have resulted in random assignments of
stronger pieces to the nonincised population, which could
have contributed to the higher average MOR value.
Measuring MOE using transverse vibration is well estab-
lished and is well correlated with MOE and MOR measured
using static bending tests (Franca et al. 2018, 2019; Uzcate-
gui et al. 2023). However, moisture content can complicate
the measurement of MOE using transverse vibration. Although
some studies have shown good correlations between green
MOE measured by transverse vibration and dry MOE mea-
sured in static bending (Halabe et al. 1995), moisture content

1.60

does play a role in how transverse stress waves are propagated
through lumber, particularly below 50 percent moisture con-
tent (Gerhards 1975). Moisture content variation among green
4-by-6s sorted using transverse vibration may have resulted in
inaccurate MOE-based pairings that contributed to differences
in MOR in the two populations. There was no opportunity in
this test to dry lumber before E-sorting in this study because
of limited access to incising equipment.

As an alternative analytical method, the raw MOE and MOR
data for the nonincised and incised boards were rank sorted on
the basis of their tested MOR for MOR pairs and MOE for
MOE pair, then analyzed in rank order as 48 MOR-matched
pairs without regard to the initial E-rating. The ratios of nonin-
cised to incised MORs and MOEs were then compared.

The 48 paired MOE ratio values were similar (ideal ratio =
1) except for the three weakest paired boards (Fig. 3). The
incised-to-nonincised ratio for MOR, however, showed a
distinctive trend across the 48-pair distribution. MOR ratios
(incised to nonincised) in the lower quartile (at or below the
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MOE values.
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25th percentile, i.e., ranks 1 to 12 of 48) of the MOR distri-
bution averaged about 0.80, whereas MOR ratios above the
lower quartile (above the 25th percentile, i.e., ranks 13 to
48) averaged about 0.90 (Fig. 3).

Although this is only a preliminary assessment, these
results clearly support the current engineering design adjust-
ment factors for incised lumber in the NDS (American Wood
Council 2024). However, viewing these data across the entire
MOR distribution results clearly showed that >75 percent of
4-by-6 test materials experienced only about a 10 percent
reduction in MOR. The lack of true E-matching in this study
probably accounts for these differences in MOR effect across
the MOR distribution. Thus, these results seem to indicate that
although the NDS adjustment C; factor of 0.80 is clearly appli-
cable for nominal 2-by, and other predictive models have indi-
cated that no C; factor is required for timbers, further study of
the effects of incising on full-size nominal 4-by material might
support a C; of 0.85 to 0.90 for these dimensions.

Conclusions

Incising had little practical effect on MOE of nominal
Douglas-fir 4 by 6-in (89 by 140-mm) lumber but did signif-
icantly reduce MOR. MOR effects varied greatly across the
MOR distribution but were more pronounced at the lower
range of the MOR distribution (<25th percentile). These
results support the current NDS adjustment factors, but
study on E-matched, full-length nominal 4 by 6-in (89 by
140-mm) lumber would eliminate some uncertainties in this
data set.
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