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Abstract

The American Society of Testing and Materials (ASTM), D1990 details standard practices for establishing and maintaining
design values for dimension lumber. Included in this standard are statistical methods for detecting changes in dimension lumber
properties over time. A characteristic (or design) value, also known as the allowable property, is published for each lumber
property, and this value must be updated whenever changes in the resource warrant. Currently ASTM D1990 calls for the use of
the Wilcoxon Rank Sum test (also known as the Mann-Whitney test) to detect changes in these properties. In essence, this test is
a two-sample test designed to detect changes in the underlying populations from whence the samples were drawn. In this
work, FPL researchers recommend, with justification, that this practice be revised to the use of one-sample tests that focus
on detecting disparities between the current resource properties and the corresponding currently accepted design values. We
detail the tests that are recommended for properties whose design values are (based on) either the mean or some quantile.
We further examine the impacts, in terms of statistical errors, of these alternative tests in comparison to the current paradigm
through simulations using a collection of distributions modeled from actual within-grade softwood lumber modulus of elasticity

and modulus of rupture data.

Dimension lumber property monitoring is a long-standing
practice intended to ensure allowable properties reflect the
current state of the resources they represent. Under the current
paradigm, this is accomplished with the use of a characteristic
(or design) value for each lumber property. It is important to
recognize that this value, which is a summary statistic describ-
ing a key parameter of the resource, does not provide complete
information about the property; it merely addresses what the
industry finds to be an important descriptor of the property.
Currently, the testing procedure applied to identify “decreases”
in the properties is not designed to detect specifically decreases
in underlying parameters driving these characteristic values; it
is designed to detect general distributional decreases. Strength
design values (bending, tension, and compression) are dictated
by the lower tail of the distribution of strength values obtained
through testing. It is imperative that a designer be able to
assume that any piece of dimension lumber will perform
to the stated design level. For this reason, the mean and median
are not as important as the lower extent of the values for
the distribution.

Prior to the 1990s, design values for dimension lumber were
based upon tests of small clear wood specimens. Previous
testing had quantified the reduction in wood strength caused
by features such as knots, slope of grain, etc. As feature size
increased and/or features moved closer to critical points on the
board (tension edge), so did the reduction in strength caused
by the feature. Lumber with small features away from the
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board edge was assumed to have higher strength than lumber
with larger features closer to the board edge. Grades were
established by prescribing the size and location of the feature
allowable for a particular grade based on both the effect on
strength and/or appearance and usability. The presence of the
features was determined visually, leading to the term visually
graded lumber.

In the late 1970s and 1980s a large-scale sampling and
testing plan was undertaken to establish design values for
certain properties based on full sized dimension lumber
rather than small pieces of clear wood. While the lumber
grade was still dictated by the size and location of features
within the board, the design values were now based upon the
strength values obtained from direct testing of the lumber with
those features. This was known as the in-grade process. In
1991, the design values for visually graded dimension lumber
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based upon testing of full-sized lumber were published (Evans
2001, Green and Evans 2001).

In the early 2010s regular monitoring became required
for large production commercial species groups. Monitoring
typically involved gathering a sample of dimension lumber
of a single size (2X4, 2X6, etc.) and grade (usually number 2)
from across the production region. The monitoring sample was
(usually) tested in bending, and the modulus of rupture and
modulus of elasticity were compared against the in-grade data.

Between the time of the original in-grade testing and
required monitoring, machines capable of performing visual
grading had become available. For some commercial species
groups, these advancements resulted in a narrower range of
strength values. While the lower tail of the monitoring sample
exceeded the lower tail of the in-grade sample, the mean of
the monitoring sample was below the mean of the in-grade
sample. As part of the monitoring process, the two samples were
compared using the Wilcoxon rank sum test.

Hence, the narrowing of the strength distribution of the
monitoring sample caused the Wilcoxon rank sum test to
(correctly) indicate a reduction in the present resource relative
to the in-grade population but gave little insight into whether
the monitoring sample supported the existing design values,
which were based upon the lower tail of both distributions
(Kretschmann et al. 2014).

In this work, FPL researchers recommend a revision to
ASTM D1990, Section 14 (and related sections), in which one-
sample testing replaces the existing Wilcoxon rank sum test for
detecting changes in characteristic values specifically over time
(ASTM International 2019). In addition, we propose one-sample
tests that are specific to the distributional parameter(s) on which
the characteristic values are based, rather than the general “sto-
chastic differences” approach offered by the Wilcoxon test. We
argue that testing procedures should be, at the very least, related
to the methods initially applied to establish the published charac-
teristic values. For example, if the characteristic value is based
on the 5th percentile, then the test should focus its detection capa-
bilities on the 5th percentile, e.g., a simple non-parametric test; if
the characteristic value is based on the mean, then the test should
focus its detection capabilities on the mean, e.g. the one-sample
t-test. We show by simulation that this revision will significantly
reduce the likelihood of Type I and Type II errors in these statis-
tical procedures, potentially saving countless dollars by avoiding
unnecessary lumber testing and improving the overall integrity of
the monitoring process.

This paper is organized as follows. First, we explain the
purposes of the monitoring program and the current testing
paradigm before detailing our recommended revision to the
program guidance in ASTM D1990. We then exhibit a system-
atic simulation that mimics the testing procedure normally fol-
lowed under the monitoring program and present results of said
simulations for both the Wilcoxon and the alternative tests for
both modulus of elasticity (MOE) and modulus of rupture
(MOR). In the last section, we provide some concluding remarks
and restate our recommendations for updates to the monitoring
program. Appendices discuss some mathematical modeling
details and further expand on some findings in the paper.

Background

A characteristic value can assume one of three possible
forms, each computed from a sample of the resource property:

1. The sample mean, used for the modulus of elasticity (MOE),

230

2. The sample median', or
3. The 75% Lower Tolerance Limit (LTL) for the 5th per-
centile, used for the modulus of rupture (MOR).

It should be noted that while these are the values assumed
by the characteristic values, if perfect information was available
about the properties, they would be given their corresponding
population values; that is, the population mean would be used
for the mean, the population median would be used for the
median, and the population 5th percentile would be used for
the LTL of the 5th percentile. This is important to consider
when performing statistical test, and it is the reason why we
use the unknown population parameters in the statement of
our hypotheses discussed later.

Lumber properties can change over time. These changes
can be due to a variety of reasons, e.g., advances in forest
management practices, growth rates, mill processes and
technologies, or grading procedures. The monitoring program
was instituted as a result of the recognition of these factors.
Kretschmann et al. (1999) stresses this point:

Independent grading agencies have a strong interest
in determining whether significant change (particularly a
decrease in material properties) in the lumber resource has
occurred.

ASTM D1990 defines monitoring as

a periodic review of a subset of structural properties of
a lumber cell to determine if a potential downward shift
from the assigned values indicates a need for an evaluation
or reassessment, or both, of allowable properties developed
with this practice.

ASTM D1990 further states that a fundamental purpose of
monitoring is to

determine if there is sound evidence to believe that there
has been a change in the product performance sufficient to
justify an evaluation . . . or a reassessment.

Evaluations and reassessments are primarily performed
to establish new characteristic values.

Therefore, through the monitoring program detailed in the
standard, grading agencies are tasked with assessing whether
a characteristic value comports with the current state of the
resource. The test that has long been recommended by the
standard is the Wilcoxon rank sum test, a nonparametric
two-sample test that is designed to detect general stochastic
differences between the corresponding populations. There are
two problems with this:

1. The Wilcoxon test does not specifically address the parame-
ter of the property distribution that drives the characteristic
value. Rather, it measures general probabilistic differences
between two populations: the original from which a sample
was collected and the characteristic value computed, and

! The median is not currently used as the basis for any softwood
lumber characteristic value, but we include it here for consistency
in accordance with ASTM D1990, 3.2.2.
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the current from which a sample is presented. It does not
address specifically the mean, nor the median, nor the 5th
percentile, nor any other specific parameter of the distri-
bution. Therefore, used as a test whose sole purpose is to
assess whether a particular one of these parameters is rea-
sonably represented by the currently published value, the
Wilcoxon is not ideal.

2. The Wilcoxon is a 2-sample test. Once again, we are inter-
ested in assessing whether the currently published value,
however and whenever it may have been first computed,
comports with the current resource property. The only
information relevant to this question is that currently
published value and any information which pertains to
the current population, e.g., a representative sample of said
property. Under no circumstance would a second sample,
particularly any that does not pertain to the current popula-
tion, be useful to answering this question. Such unneces-
sary use of data can only serve to add variation, making it
more difficult for the test to detect a difference.

To address this issue, FPL researchers recommend a revision
to the current testing procedures in this standard. In the follow-
ing sections, we present the proposed testing procedures, justify
them, and provide simulation evidence to support them.

Proposed Testing Revisions
Before explaining the specifics, we first must fully under-
stand the types of statistical error and their consequences in
the context of lumber property monitoring.

e Type I error. Also known as “false positives,” Type I error
events occur when the null hypothesis, Hy, is rejected
despite the fact that it holds. Generally, Type I error is
easily controlled, since, in performing the hypothesis test,
assuming Hy presents knowable conditions. For example,
suppose that we wish to know if the average height of males
in France is greater than the same in Nigeria. To do this, we
would construct a ¢-test with Hj stating the average male
height in both countries is the same. We choose equality
since it is the circumstance most difficult to distinguish
from the state we are trying to detect; that is, the “closest”
circumstance to a violation of Hy: Nigerian males are at
least as tall as French males. This assumption has reason-
ably knowable consequences, and we therefore are able to
make tangible predictions based on those consequences
which can then be compared to the data. In lumber monitor-
ing testing, Hy would state that the published characteristic
value is no larger than the current corresponding population
value. Thus, a Type I error event occurs when the test
suggests that the characteristic value needs to be revised
(is too high), even though it doesn’t. This results in the
industry needing to engage in (usually expensive) reevalu-
ation efforts (also described in D1990) to obtain a revised
characteristic value.

e Type II error. Also known as “false negatives,” Type Il
error events occur when Hj is not rejected even though it
does not hold. Unlike Type I error, Type II error is difficult
to control, for the conditions under which it can occur are
largely unknown or can be drawn from a large collection of
possibilities. Using the previous heights example, Type 11
error can occur when the average heights of Nigerian males
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is 2 cm less than that of the French, but it can also occur if
that number was 2 mm. These two scenarios present very
different Type II error rates with the latter being much
higher under the same testing conditions. For this reason,
assessing actual Type II error rates is difficult and generally
requires undesirable assumptions. For lumber property mon-
itoring, a Type II error event occurs when the test suggests
the characteristic value is representative of the resource
property when, in reality, it is excessive. While this does
not cost money in unnecessary testing procedures, it does
pose a safety risk, since the engineering community and
regulatory agencies rely on these values to design struc-
tures with lumber and maintain building codes. In this
sense, it can be said that, while Type I error can lead to
unnecessary expense, Type Il error can lead to even more
serious consequences.

Proposed alternative tests

In this section we explain the testing procedures that FPL
researchers propose replace the existing Wilcoxon test in
ASTM D1990. Set o to be the desired level of significance
(that is, the maximum acceptable Type I Error probability);
in the standard, this value is currently set to oo = 0.05. Also,
suppose the (adjusted) sample from the current resource
property is X = (X1,Xa,...,X,),n € Z". For each of the
three cases for the characteristic value, we present a specific
test:

1. Mean. Suppose the published characteristic value is p,,
and the actual unknown mean of the current population is
. If the underlying distribution of the property can rea-
sonably be assumed to be well-behaved, that is, continuous,
and possessing a finite second moment (finite variance),
then a reasonable (and statistically powerful) test for the
mean is the one-sample #-test:

Ho : = .
Set
X —
;= Ho,
SZ

where X = n 'S0 X, 82 = (n— 1) '3 (& ~X)’, and,
under Hy, t ~ t(n — 1); that is, ¢ follows a ¢-distribution
with n — 1 degrees of freedom. Therefore, if t<<t,, i,
where t,,_1 is the ath quantile of a ¢-distribution with n —
1 degrees of freedom, then H, may be rejected at the o
level of significance. This test can be particularly robust to
deviations from its assumptions when 7 is large. In the
case of lumber monitoring, n =~ 360, a value sufficient to
overcome even very unusual distributional forms, which,
as it happens, have rarely, if ever, been historically exhib-
ited by MOE.

2. Median. Suppose the published characteristic value is
my, and the actual unknown median is m. If the underlying
distribution of the resource property can be assumed to be
continuous, then a simple nonparametric test may be applied
to assess the median:
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Hy: m=my

Set U _q to be the distribution-free 100(1 — o)% upper
tolerance limit (UTL) for the median; that is,

Uy = inf {Xj;:P(Xy >m)>1—a},

where

o n - () 80)

i=0

Then, Hy may be rejected at the o level of significance
whenever U;_o, <my. Because it is nonparametric, this
test is highly robust to deviations from typical underly-
ing distributions. Founded on a century of statistical the-
ory, this test guarantees containment of Type I error, and
its specific focus on the median suggests its success in
terms of Type II error as well.

3. 5th Percentile. Suppose the published characteristic value
is qo (that is, the 75% LTL for the 5th percentile computed
from some previous sample), and the actual unknown 5th
percentile of the current population is ¢. If the underlying
distribution of the resource property can be assumed to be
continuous, then a test similar to that for the median can
be applied:

Hy : g = qo.

Set V|_4 to be the distribution-free 100(1 — )% UTL
for ¢; that is,

Vi_y = inf {X(j) :P(X(j) > q) >1- O(},

where

0= £(0) 3 6

i=

Then, Hy may be rejected at the o level of significance
whenever V1_, < g.

Remark. There has been some discussion in the community
about the statistical consequences of using a LTL as a
design value for lumber properties, to include some dissent
expressed by the authors. In the authors’ opinions, this
test serves as a compromise on the matter. That is, we are
no longer forwarding the concern of using an LTL in this
way; rather, we believe this test uses the LTL in a reasonable
and sustainable way, though it still results in the following
minor consequence. This test is attempting to detect the event
that the current unknown actual 5th percentile is less than the
currently accepted design value. That design value is a biased
estimate of the unknown actual 5th percentile obtained from
the previous (usually In-Grade) sample. By its design, that
75% LTL has a 25% probability of being greater than the
actual 5th percentile of the previous population and, impor-
tantly, the current actual 5th percentile in the case that it has
not changed. Hence, not only will this test tend to detect cases
in which the unknown actual 5th percentile has decreased
over time, but it also has the secondary effect of tending to
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“correct” that 25% of cases in which the original design
value was excessive due only to random chance. The long-
term consequence of the latter is that the actual probability
associated with the design value will tend to be greater than
the reported 75%. Though favorable, this is an unavoidable
consequence of using an LTL as a design value under this
testing regime. Further discussion is found in Appendix B.

All three of these tests are based on well-established statistical
theory and are not at all novel.

Simulations

As stated earlier, to assess Type I and II errors for each of
these testing regimes and compare these results to those
produced by the Wilcoxon Rank Sum test, we must make a
collection of assumptions that may not be terribly desirable.
To minimize the likelihood that these results do not represent
reality, we will apply assumptions that the authors believe most
likely represent the lumber property monitoring environment.

Model selection and construction

In this study, we address the two properties that are currently
used as the basis for characteristic values of lumber properties:
the mean and the 5th percentile. MOE and MOR, respectively,
are properties whose corresponding characteristic values are
based on these. One notable feature of these two properties is
that they are weakly dependent in the context of softwood lum-
ber. Therefore, we will simulate these two properties using a
bivariate statistical model that is fit to actual observed data from
the field. The data set is from a recent study, but, because it con-
stitutes proprietary information, we divulge here only that it
includes observed MOE and MOR values (adjusted for mois-
ture and size) from just under 500 boards, the authors have con-
cluded that this data represents typical results from the industry,
and the values have been normalized so that the mean MOE is
IM psi and the Sth percentile of MOR is 1,000 psi so as to
obscure the source of the dataset. Given the inherent weak
dependence relationship between MOE and MOR, we choose
to model the distributions as the marginals of a bivariate distribu-
tion. Using the process outlined in Appendix A, we constructed
7,500 models which varied slightly from one another. Contour
plots for two of the models from the database are shown in

Figure 1.

Simulation method

Each simulation consisted of formulating datasets of size
360 from two randomly selected models of MOE and MOR.
To choose which of the two cases will be assigned to the in-
Grade population, we designed a simple algorithm that sto-
chastically chooses the assigned roles of the samples based on
the known difference between the corresponding parame-
ters. The larger the difference between the parameters, the
more likely the In-Grade sample would be assigned the
stronger sample. This tends to shed more light on Type II error
in extreme cases of differences and Type I error in cases with
small differences.

Datasets of size 360 are randomly generated from the
models (one In-Grade MOE, one monitoring MOE, with
corresponding In-Grade MOR, and monitoring MOR sam-
ples), and, for both properties, a characteristic value is con-
structed in accordance with ASTM D1990 from the sample
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Figure 1.—Contour plots of two scaled Olkin & Liu Bivariate Beta densities from the database: BBs(6.63, 5.44, 10.63, 2.42, 5.54)

(top), and BBs(8.69, 8.33, 16.36, 2.99, 6.31) (bottom).

representing the In-Grade population. Each pair fell into
one of two basic cases:

1. Cases in which Hj holds; that is, cases where the charac-
teristic value calculated from the In-Grade sample is less
than or equal to the corresponding population parameter of
the distribution used to generate the monitoring sample. In
these cases, only Type I error is possible.

2. Cases in which H, does not hold. Specifically, these
cases ranged from exhibiting a negligible decrease in the
characteristic value to exhibiting a 25% decrease (between
In-Grade and monitoring). In these cases, only Type II
error is possible.

For each of the two properties, we performed the
Wilcoxon test and the alternative one-sample test assigned
to the corresponding property described above. This
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procedure was repeated four times for each of 25 million ran-
dom choices of property distributions: once at each of the
o = 0.05,0.10,0.15,0.2 significance levels. This may
sound excessive. However, as will be seen in the next sec-
tion, we needed to observe statistically significant error rates
across a continuum of differences in p and p, for MOE and
between ¢ and ¢go for MOR. The results are shared in the
next section.

Remark. The authors should mention that we have previ-
ously endorsed the use of the melded random quantile dif-
ference (MRQD) test (Arvanitis 2022) for lumber property
monitoring when the characteristic value is based on a population
quantile. In light of further consideration and investigation, we
now retract this position for two reasons:

1. Under some, possibly many, circumstances, the test can be
highly conservative in terms of Type I error. Because MOR
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follows a rather well-behaved distribution, it is one such
case of this conservatism. This, we now believe, is problem-
atic because it leads to unnecessarily excessive Type II error
which, as previously stated, presents elevated safety risks.
2. It is a two-sample test. As discussed earlier in this work,
using the original (typically In-Grade) sample serves only to
introduce unnecessary noise with no accompanying benefit.

For these reasons, we have chosen not to include the
MRQD test in this study. While the test can certainly be
useful for many other applications, possibly even some
involving softwood lumber properties, e.g., fact-finding and
other research endeavors, we are no longer of the opinion
that it is appropriate for softwood lumber property monitor-
ing applications.

Results

For each value of o, the process outlined above was
repeated in its entirety 25 million times, for each of which it

MOE Power, 5% Significance Level

1.0

Power

0.2 0.4
|

0.0
|

Percent Difference

MOE Power, 15% Significance Level

1.0

Power
0.4 0.6

0.2

0.0
|

Percent Difference

was determined whether a Type I, Type I, or no error occurred
for both the MOE and MOR properties. In addition, the actual
percentage disparity between the In-Grade-determined char-
acteristic value and the actual corresponding parameter of the
monitoring population was also recorded, where it was
negative if it decreased (Hy did not hold) or positive if it
increased (Hj held). MOE and MOR results are shown in
Figures 2 and 3, respectively.

In all cases, a small but significant improvement in Type
IT error is observed for MOE. Though the Wilcoxon test
exhibits less Type I error, the #-test contains Type I error to
a., as prescribed. For MOR, the results are unsurprisingly more
significant. Type I error for the Wilcoxon test far exceeds o
and is thus substantially smaller for the alternative test. This is
not because the Wilcoxon test is a poor or ineffective test;
rather, it is because the Wilcoxon test is not designed to
address the null hypothesis as stated. For Type Il error, the
Wilcoxon test performs better for small differences only
(by sacrificing Type I error control).

MOE Power, 10% Significance Level

1.0

Power

0.4

0.2

0.0
|

Percent Difference

MOE Power, 20% Significance Level

1.0

Power
0.4 0.6

0.2

0.0
|

Percent Difference

Figure 2—Power plots for MOE. The Wilcoxon test is shown in black while the alternative test is shown in red.
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Figure 3.—Power plots for MOR. The Wilcoxon test is shown in black while the alternative test is shown in red.

Discussion

Among those involved with maintaining ASTM D1990,
there are predominately two identified goals of monitoring.
One goal is to detect a downward shift in the wood resource;
the other is to determine if the sample supports current
published design values. The producer is concerned with
both goals; the consumer is likely concerned only with the
latter. Over time, producers must have confidence that the
resource properties are stable. If not, plans must be made
to harvest the resource from different areas or go through
the arduous process of modifying design values. This is
important to the producer, but of less concern for the con-
sumer. Day to day, both producers and consumers must
have confidence that the product has the claimed strength
to avoid potential life-safety hazards.

The Wilcoxon test provides insight into shifts in the resource
but is not useful when determining if the current resource
supports the published design values. Using the Wil-
coxon test it is possible that no downward shift in the

FOREST PRODUCTS JOURNAL VoL.75,No. 3

resource property is detected, but the lower tail of the
strength distribution may have decreased below the level
that can support current design values. Conversely, the
Wilcoxon test may detect a downward shift in the
resource property even though the current resource sup-
ports the design values. To provide a full picture of the
current state of the resource, a method to evaluate
whether the resource supports the current published
design values must be used.

Conclusion

In this work, it has been shown that a simpler statistical
test addresses the question of whether a reevaluation of the
characteristic values of dimension lumber properties is
necessary in a manner that is significantly better than the
current testing regime. For MOE, the one-sample 7-test is
recommended to replace the Wilcoxon test, and for MOR, the
simple non-parametric test outlined herein is recommended to
replace the Wilcoxon test.
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It should be noted that more work must be done to assess
the consequences of treating the samples as random samples
without regard to the possibility of clustering and other forms
of dependence within the samples that the sampling proce-
dures suggest may, at times, manifest. Independent study
of these issues and their impacts on monitoring results is
a necessary step to ensure the integrity of the lumber monitor-
ing program.
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Appendix

Appendix A: Methodology for constructing the
model database

To simulate realistic samples for MOE and MOR, we
have used a recent dataset of (paired) MOE and MOR
observations that includes just under 500 samples and has been
deemed typical across the softwood lumber industry by
expert opinion. The only alteration made to the dataset
for purposes of this study has been to scale the MOE
observations to have a mean of 1 million psi and scale the
MOR observations to have a 5th percentile of 1,000 psi.
Because these two properties tend to exhibit a weak posi-
tive correlation, we model them together with a bivariate
distribution and can subsequently generate simulated
samples of any size from that model.

Family of distributions for modeling MOE & MOR
Given the slight dependency between MOE and MOR,
the fact that both properties’ observed values must be
non-negative, and that both typically exhibit uni-modal-
ity with varying degrees (and sometimes directions) of
skewness, we have constructed a scaled version of the
Olkin & Liu Bivariate Beta family (Olkin and Liu 2003).
With scaling, this family has a total of five parameters,
three of which can describe a positive dependence relation-
ship. Because the Beta distribution is supported on the unit
interval, the scale of each marginal represents a theoretical
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maximum value of the property, which, once again, is realistic
since there certainly exists such an unknown quantity for both
of these two properties. The density of this family is

o —1 on—1 o +fB—1 o +P—1
(0080
f(X17X2): Uil N2 1 .

o +on+f
nimaB(on, 00, B) (1 - 32)

Ho<x <m;j = 1,2},

where o1, 0,1,y > 0, B > 1, and B(-) is the generalized
beta function,

L r@)
F(Zf: 1ai> 7

with I'(+) being the gamma function. We will denote this dis-
tribution by BB,(ot1, o2, B, My, Ny)- It can be shown that the
marginals follow scaled beta distributions with the following
densities:

B(ay,az, ..., a;)

X aj—1 oy B—1
filx) = (nf) njB((% B;) {0 <x <m;}

for j = 1,2. For any dataset, maximum likelihood esti-
mates may be obtained via numerical optimization for the
parameters of the BB,(a, o, B, Ny, M,) family. Clearly
is the only one of the five parameters to be common
between the marginals, and it, together with mild contri-
butions from o and o, governs the dependence relation-
ship between the two marginals. The last two parameters,
N, and m,, represent the scales of the marginals; that is,
the maximum possible values of the corresponding ran-
dom variables. These two parameters bear no impact on
the dependence relationship between the marginals. For
the following database, we have assigned MOE to X}, the
first marginal, and MOR to X;, the second.

Model database

The goal is to form a database of varying distributions
(parameter sets) which can plausibly represent the same
resource. This was achieved by randomly selecting 100
observations at a time from the dataset described in the
beginning of this appendix and obtaining parameter
estimates for the Scaled Olkin & Liu Bivariate Beta dis-
tribution, based on those observations. We repeated this
process 7,500 times to complete the database. The resul-
tant MOE means varied by about =10% and MOR 5th
percentiles varied by about =25%.

Appendix B: Impact of the 5th percentile test on
the LTL

As stated previously, following a monitoring examination,
the actual probability associated with the design value will
tend to be greater than the reported 75%. This appendix further
details why.

Suppose that the actual unknown 5th percentile of the
population, ¢, has not changed over time. Further, suppose
> is the probability of rejecting Hy when H does not hold,
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that is, the statistical power of the test, and set p; to the prob-
ability of rejecting Hy when Hj holds, that is the probability
of Type I error. It can therefore be concluded that

3(4+p2—p1)

P(gnew < q) = 16

where g, is the original design value, g, if Hy was not
rejected (and therefore no reevaluation was done) or the
newly updated design value if H, was rejected (and a
reevaluation done). Now, since ¢ is a fixed value regard-
less of whether H is rejected, by the design of the one-
sample 5th percentile test, it must be that p; < p,, so that
P(qnew < g) > 0.75, with an upper bound of 0.9375.
However, this is after only one monitoring evaluation; it further
increases after multiple evaluations. For example, if p; = 0.2,
and p, = 0.6, then, after one monitoring test, the probability
for the LTL representing the design value rises to 0.825; after
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two, 0.8625. In addition, while this probability would increase
over multiple monitoring tests, it would near an asymptotic
value within only a few such tests, e.g., for the present exam-
ple, the limiting probability is 0.9. Now, under no circumstance
would we know the values of p; and p, because we do not
know the value of ¢, nor do we know the exact distribution of
MOR, and we therefore cannot determine (or even bound) the
probability that the UTL is less than g, so we can only guess
what the actual probabilities might be. What we can be certain
about is that the probability associated with the LTL (the char-
acteristic value) will remain at least 75% regardless of p; and
p2 or how many monitoring tests are performed on the resource
over the years. This effect is, of course, in addition to the
disparity between the assigned probability and the actual
probability associated with the corresponding order statis-
tic representing the LTL, which may be significantly
higher due to the inherent granularity of nonparametric
tolerance limits.
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