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Abstract

The influence of thermal history on the viscoelastic behavior of Chinese fir wood (Cunninghamia lanceolata) was investigated
in the temperature range between —136°C and 120°C. The storage modulus (£”), loss modulus (£'"), and loss factor (tan d) of the
radial specimens dried over P,Os were determined in tensile mode at multiple frequencies ranging from 0.5 to 10 Hz. Results
showed that the £ values of specimens were negatively correlated with the measured temperature. Moreover, d-relaxation,
v-relaxation, and P-relaxation were detected in the £ or tan 6 spectrum. Wood specimens with thermal history exhibited
d-relaxation, with a corresponding temperature range of —129.3°C to —107.4°C, which has not been previously reported or
discussed. The y-relaxation was also influenced by thermal history; its peak temperature shifted to a higher range. Furthermore,
clear differences in the viscoelastic behavior of wood were found between cooling and heating runs. A comparison demonstrated
that B-relaxation at approximately 31.9°C to 37.6°C was only observed in the heating run. The B-relaxation peak temperature
showed no frequency dependence, but the B-relaxation intensity significantly decreased with increasing frequency. In contrast,
both the peak temperature and intensity of d-relaxation and y-relaxation showed significant frequency dependence. The apparent
activation energy of o-relaxation and y-relaxation was 37.24 to 49.87 kJ/mol and 59.69 to 74.30 klJ/mol, respectively, which

indicated that d-relaxation was attributable to limited torsional vibration of groups in the amorphous wood cell walls.

g V ith the advancement of dynamic mechanical analy-
sis, a more refined and comprehensive understanding of the
mechanical relaxations of wood has been achieved. The
mechanical relaxations of wood, particularly when wet,
have been extensively studied by numerous researchers
(Salmén 1984, Placet et al. 2007, Havimo 2009, Furuta
et al. 2010, Song et al. 2014, Salmén et al. 2016, Li et al.
2020a), as the softening of wood holds significance for
many processing and manufacturing operations in the wood
industry. This softening of wood is accompanied by a sig-
nificant decrease in mechanical strength, which is widely
attributed to the glass transition of lignin (Salmén 1984,
Placet et al. 2007). In contrast, the secondary mechanical
relaxations of wood at low temperatures or over short dura-
tions are much more complex, and their precise attribution
to specific entities is still a subject of controversy.

The peak temperatures of secondary relaxations are closely
correlated with wood species, grain orientation, moisture
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content (MC) of specimens, loading mode, and experiment
measurement frequency, as presented in Table 1. In previ-
ous studies, the relaxation of completely dry wood speci-
mens of Sitka spruce (Picea sitchensis) was determined using
the free flexural vibration method and exhibited a single relax-
ation in the temperature range from —110°C to —93°C,
referred to as y-relaxation, attributed to the motion of methylol
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groups in the amorphous region of wood cell walls (Obataya
et al. 1996, 2001). Studies have also reported that at a low MC
of 0.7 percent, a new peak appeared at —40°C (33 Hz), and
then this peak shifted to lower temperatures with increasing
MC (Obataya et al. 1996, 1998). Jiang and coworkers exam-
ined the mechanical relaxations of Chinese fir (Cunninghamia
lanceolata) with different MCs under tension mode in a low-
temperature environment (Jiang and Lu 2009a, 2009b; Li
et al. 2018, 2020b, 2023; Li et al. 2019). As shown in Table 1,
they discovered that y-relaxation ranged from —112.4°C to
—27.8°C and was present across all orthotropic directions,
regardless of the amount of adsorbed water. They attributed
this y-relaxation to the reorientation of methylol groups and
adsorbed water molecules within the amorphous wood cell
walls. While the damping properties of wood with increasing
temperature are well investigated, less information is available
about the mechanical relaxations of wood during cooling.
Li et al. (2020b) investigated the effect of bound water and
free water on orthotropic viscoelastic properties during the
quenching process in the temperature range from 20°C to
—120°C. Wood specimens with bound water in their cell walls
exhibited a distinct y-relaxation, whereas specimens with free
water only displayed the high-temperature side of y-relaxation
in three anatomical directions. Further, some recent studies
have investigated the viscoelastic behavior of wood during
both cooling and heating (Li et al. 2020b, 2023), and these
results revealed that the peak temperature of y-relaxation dur-
ing cooling was lower than that during heating, irrespective of
the amount of adsorbed water. The mismatch in peak tempera-
tures of y-relaxation between heating and cooling scans might
be attributable to physical aging and kinetic effects (Chowd-
hury et al. 2010, Wan et al. 2018).

Previous researchers have predominantly examined the
mechanical relaxations of wood in a certain temperature
range, while studies investigating the effect of quenching or
heating history on wood mechanical relaxations are sparse.
Several studies have investigated the quenching effect on the
mechanical properties of wet wood (Furuta et al. 1995; Kudo
et al. 2003; Nakano 2005; Iida et al. 2006; Wang et al. 2006,
2008; Miyoshi et al. 2020). Quenching induces structural
changes at the molecular level, which, in turn, significantly
alter the properties of the wood. Nakano (2005) attributed
quenching-induced relaxation to the free volume temporarily
created by freezing the molecular chain motion of wood
components during the quenching process. Nevertheless, a
few studies have investigated the effect of thermal history on
the viscoelastic properties of dry wood (Takahashi et al.
2004, Kojiro et al. 2008). Kojiro et al. (2008) found that the
unstable microstructure of dry wood was modified by acti-
vated molecular motion in the first heating process, and this
phenomenon reoccurred after subsequent wetting and drying
cycles. Takahashi et al. (2004) reported that wood exhibited
greater creep immediately after drying compared with stable
wood conditioned over a prolonged period. However, there
have been few studies about the effect of thermal history on
the mechanical relaxations of wood.

To date, studies on the mechanical relaxations of wood at
low temperatures are few, and the effect of thermal history
on the secondary relaxations remains unclear. Therefore,
the purpose of this present research was to investigate the
influence of thermal history on the viscoelastic behavior of
dry wood determined in tensile mode between —136°C and
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120°C. Additionally, dry wood specimens were subjected to
different temperature procedures, including both cooling
and heating runs, in order to analyze and parse the effects of
different thermal histories on the mechanical relaxations of
wood. The results were expected to broaden current knowl-
edge of the secondary mechanical relaxations of dry wood
under low-temperature conditions.

Materials and Methods

Wood material

Specimens were obtained from a single 25-year-old Chi-
nese fir tree. The radial specimens were without any visual
defects and knots and were cut to dimensions of 35 mm
(radial) by 6 mm (longitudinal) by 1.5 mm (tangential)
between the 6th and 14th growth rings in the heartwood
zone. All wood specimens were dried in a sealed container
with anhydrous phosphorus pentoxide (P,Os) at room tem-
perature. When the weight variation did not exceed 0.2 per-
cent of the specimen mass at an interval of 2 hours, the
constant mass of the specimen was achieved. The corre-
sponding equilibrium MC and basic density of the wood
specimens were approximately 0.6 percent and 285 kgrm >,
respectively.

Experimental methods

The viscoelastic behavior of wood specimens was evalu-
ated using a dynamic mechanical analyzer (DMA 2980, TA
Instruments) with a cooling accessory. The viscoelastic
parameters—storage modulus (£’), loss modulus (£”), and
loss factor (tan & = E”/E')y—were automatically recorded.
The cooling system utilized cold nitrogen gas generated
from controlled evaporation of liquid nitrogen. Specimens
were secured in a tensile clamp with a distance of 18 mm
between clamping midpoints. The force track was set to
125 percent, which was enabled to automatically adjust the
combined static and dynamic force. The preload force was
set at 0.01 N, and a sinusoidal displacement was applied
with an amplitude of 15 um. The measurement frequencies
were 0.5, 1, 2, 5, and 10 Hz. After being mounted on the
tensile clamp in the testing chamber, wood specimens were
subjected to two temperature procedures: Procedure A (a
sequential cool/heat/isothermal/cool/heat treatment) and
Procedure B (a sequential heat/cool/heat/isothermal/cool/
heat treatment), as detailed in Figure 1. Before Procedure
B, wood specimens were treated again through an isother-
mal process at 103°C for 12 hours to obtain completely dry
wood specimens.

Results and Discussion

Effect of thermal history on the viscoelastic
behavior of dry wood at 10 Hz

Figure 2 shows the temperature dependencies of E', E”,
and tan o values at 10 Hz in the first cooling run in Procedure
A with a programmed rate of 2°C/min. The £’ value of the
specimen at temperatures of 25°C and —136°C was 485.3
and 722.5 MPa, respectively. The E’ value of specimens
increased with decreasing temperature. Regarding both the
E" and tan § peaks, a distinct relaxation of wood, labeled as
the y-relaxation, was observed at approximately —60.3°C
and —54.4°C, respectively. These results are consistent with
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Figure 1.—Experimental setup for the temperature scan tests.
Procedure A: sequential cool/heat/isothermal/cool/heat treatments;
Procedure B: sequential heat/cool/heat/isothermal/cool/heat treat-
ments. Before tests of Procedure B, wood specimens were
treated again by an isothermal process of 103 °C for 12 hours.

those of previous studies (Backman and Lindberg 2001;
Jiang and Lu 2009a, 2009b; Li et al. 2018, 2020b, 2023).
Figure 3 presents the subsequent heating run and the sec-
ond cooling and heating scans of Procedure A for the same
specimen. The E’ values of specimens were negatively cor-
related with the measured temperature in the temperature
range between —136°C and 120°C. According to the results
shown in Figures 3a and 3b, the £’ value was highly repro-
ducible in the first and second heating runs of Procedure
A. However, the locations of relaxations from the tan o
spectrum significantly differed between the first heating run
and the second cooling run (Fig. 3a), and between the first
and second heating runs of Procedure A (Figs. 3a and 3b).
All tan J relaxations of wood specimens were secondary, and
the intensities of tan & were below 0.04. In both the first and
second heating runs, a distinct relaxation was observed at
around 37.5°C, labeled as the PB-relaxation, while none was
observed in the cooling runs. As seen in Figure 3, the intensity
of B-relaxation was larger than that of y-relaxation. Alongside
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Figure 2—Temperature dependencies of tensile storage mod-
ulus (E'), loss modulus (E’), and loss factor (tan &) for the
radial specimen at a frequency of 10 Hz in the first cooling run
in Procedure A.

the occurrence of the B-relaxation, the £’ values of specimens
significantly decreased with increasing temperature. These
facts indicated that the B-relaxation might be attributed to the
motion of low-molecular-weight hemicellulose (Backman
and Lindberg 2001, Placet et al. 2007, Li et al. 2019), which
might be related to a small amount of adsorbed water at low
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Figure 3.—Temperature dependencies of tensile storage mod-
ulus (E') and loss factor (tan & ) for the radial specimen at a fre-
quency of 10 Hz in the first heating run and the second cooling
and heating scans of Procedure A.
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temperatures. Moreover, the £’ value in the heating run was
lower than that in the cooling run (Fig. 3b), particularly in
the temperature range near the [-relaxation peak. Con-
versely, in the temperature range below 0°C, lower values of
E’ were observed in the cooling run compared with the heat-
ing run (Figs. 3a and 3b), consistent with previous studies (Li
et al. 2023).

In the temperature range below 0°C, a tan o relaxation at
—42.2°C was observed in the first heating run (Fig. 3a), simi-
lar to the phenomenon observed in Figure 2. In both subse-
quent cooling and heating cycles, the specimens of dry wood
exhibited two secondary mechanical relaxations (Fig. 3b).
One relaxation was detected in the higher-temperature region
(around —33.6°C or —18.8°C at 10 Hz), labeled as the
v-relaxation, which was ascribed to the reorientation of meth-
ylol groups in the amorphous wood cell walls (Obataya et al.
1996, Sugiyama et al. 1998). One additional relaxation was
detected in the relatively lower temperature region (around
—119.0°C or —108.9°C at 10 Hz), labeled 5-relaxation. The
peak temperatures of both the d-relaxation and y-relaxation
in the cooling run were lower than those in the heating run.
Cooling causes wood polymers to move closer to each other,
facilitating the formation of new secondary interactions
(Chowdhury et al. 2010, Wan et al. 2018, Li et al. 2023).
Once heating begins, extra thermal energy is required to
break these new secondary bonds and expand free volume,
resulting in the occurrence of these relaxations at relatively
higher temperatures in the heating run.

To the best of our knowledge, the observation of the d-relax-
ation of dry wood specimens with a corresponding temperature
range of —111.9°C to —108.8°C has not been previously
reported or discussed, and the mechanism behind it remains
unclear. As shown in Table 1, Obataya et al. (2001) demon-
strated that dry wood specimens exhibited only one relaxation
at around —93°C, and wood specimens with 0.5 percent or
0.7 percent MC exhibited an additional relaxation at —40°C
(33 Hz; Obataya et al. 1996, 1998). To exclude the effect of
minor MC, wood specimens dried over P,Os were treated
again via an isothermal process at 120°C for 120 min (Fig. 1,
Procedure A). The secondary relaxation of dry wood speci-
mens has been widely investigated; however, the additional
relaxation in the extremely low-temperature region (below
—100°C) has not been previously discussed. These results sug-
gest that the side chains, branch chains, and various kinds of
functional groups in the amorphous wood cell walls were acti-
vated by the 120°C treatment for 120 minutes, making the
additional 6-relaxation noticeable only under such conditions.
Accordingly, a hypothesis for the thermal history mechanism
related to the new secondary relaxation is proposed.

As mentioned in the previous section, the appearance of
d-relaxation is associated with the thermal history of the 120°C
treatment for 120 minutes. To investigate the effect of minor
variations in MC or the extended duration of the isothermal
process, Figure 4 shows the temperature dependencies of E’
and tan 6 at 10 Hz with cyclical temperature variations
between —136°C and 120°C in Procedure B. Before Procedure
B tests, wood specimens were treated again through an isother-
mal process at 103°C for 12 hours to obtain dry wood speci-
mens. As shown in Figure 4b, completely dry wood specimens
from the first and second trials of Procedure B exhibited no dif-
ference in viscoelastic properties, and the observations were
highly reproducible. The changes in £ and tan J, as well as
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Figure 4.—Temperature dependencies of tensile storage mod-
ulus (E') and loss factor (tan & ) for the radial specimen at a fre-
quency of 10 Hz with cyclical temperature variations between
120°C and —136°C in Procedure B.

some secondary relaxations of wood in Procedure B, were sim-
ilar to those observed in the second cooling and heating runs of
Procedure A. The tan & versus temperature plot depicts three
relaxations of wood throughout the —136°C to 120°C tempera-
ture range (Figs. 4a and 4b). The three distinct relaxations were
labeled as the o-relaxation, y-relaxation, and [-relaxation,
respectively. An additional new &-relaxation with a corre-
sponding temperature range of —111.1°C to —107.4°C was
observed in the cooling and heating runs, when specimens in
the radial direction were subjected to thermal history. This
result clarifies that the occurrence of d-relaxation was not
related to minor changes in MC or prolonged thermal treat-
ment. Furthermore, clear differences in y-relaxation of wood
were found between cooling and heating runs. The peak tem-
perature of the y-relaxation was at around —38.0°C and
—20.0°C in the cooling run and heating run, respectively.
The y-relaxation was also influenced by thermal history;
its peak temperature shifted to a higher range. Compared
with the cooling run, the B-relaxation of wood at around
34.9°C was only observed in the heating run.

Effect of thermal history on the viscoelastic
behavior of dry wood at multiple frequencies

Figure 5 depicts the dynamic viscoelastic properties of
radial specimens of dry wood measured at 0.5, 1, 2, 5, and
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Figure 5.—Temperature dependencies of tensile storage modulus (E'), loss modulus (E’), and loss factor (tan &) for the radial
specimen measured at 0.5, 1, 2, 5, and 10 Hz in the first cooling and heating runs of Procedure A.

10 Hz in the first cooling and heating runs of Procedure
A. As the measurement frequency increased, the £’ values
of wood specimens exhibited a slight increase, and the peak
temperature of the y-relaxation shifted to a higher tempera-
ture range (Figs. 5b, Sc, Se, and 5f). These results agree
with those of previous studies (Li et al. 2019, Ashaduzza-
mana et al. 2020). As the measurement frequency increased,
the segmental motion of the wood main chain lagged behind
the change in external force, leading to a relatively low
internal friction (Jiang and Lu 2009a, Li et al. 2018). At
higher frequencies, the movements of the main chain were
likely frozen, and small-scale movements dominated,
resulting in a stiffer material. Furthermore, the peak temper-
ature of the P-relaxation did not change with frequency,
while the intensity of the P-relaxation decreased signifi-
cantly with increasing frequency. Li et al. (2018) pointed
out that the peak temperature of relaxation at around 0°C in
the E” spectrum with different MCs did not change with
frequency, which was related to the melting of frozen water.
Li et al. (2019) also reported that the relaxation at around
12°C showed frequency independence for wood specimens
in the longitudinal direction dried over P,Os.

As mentioned in the previous section, major differences in
the viscoelastic properties at 10 Hz existed between speci-
mens subjected to the first and second trials of Procedure A
(Fig. 3). Accordingly, Figure 6 shows the viscoelastic behav-
ior of radial specimens of dry wood measured at 0.5, 1, 2, 5,
and 10 Hz in the second cooling and heating runs of Proce-
dure A. The E' values and y-relaxation and B-relaxation
exhibited similar tendencies as the trends depicted in Fig-
ure 5. Moreover, the peak temperature and intensity of
d-relaxation showed frequency dependence. The dynamic
viscoelastic properties at multiple frequencies in the first
cooling and heating runs of Procedure B are also plotted in
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Figure 7. Similarly, £’ and tan 6 and secondary relaxations in
Procedure B exhibited frequency dependencies, which were
similar to those in the second cooling and heating runs of
Procedure A.

Table 2 summarizes the peak temperatures of d-relaxation
and y-relaxation for the radial specimens of dry wood at mul-
tiple frequencies ranging from 0.5 to 10 Hz in the cooling
and heating runs of Procedure A and Procedure B. The peak
temperatures of d-relaxation and y-relaxation ranged from
—129.3°C to —107.4°C and from —74.1°C to —18.8°C,
respectively. A comparison of the peak temperature of relax-
ations in the £” and tan § spectra revealed that the peak tem-
perature in the £” spectrum was lower than that in the tan o
spectrum, regardless of the change in temperature mode.
Generally, with an increase in frequency, the peak tempera-
tures of O-relaxation and y-relaxation of wood shifted to
higher ranges, consistent with previous studies (Li et al.
2018, 2023; Li et al. 2019). Furthermore, regardless of the
changes in temperature mode, the peak temperatures of both
d-relaxation and y-relaxation in the cooling run were lower
than those in the heating run.

According to the frequency dependence of the peak tem-
peratures of d-relaxation and y-relaxation and the relation-
ship between the reciprocal of the absolute relaxation-peak
temperature (1/7) and the Napierian logarithmic frequency
(In f), the apparent activation energy (AH) for the two relax-
ations of the E” spectrum was calculated using an Arrhenius
plot. The values of AH for d-relaxation and y-relaxation and
the coefficient of determination (R?) are presented in Table 3.
The AH values for d-relaxation and y-relaxation of wood
specimens were 37.24 to 49.87 kJ/mol and 59.69 to 74.30 kJ/
mol, respectively, with R* values above 0.942. The AH for
d-relaxation was lower than that for y-relaxation, indicating
that the motion of the &-relaxation process needed less
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Figure 6.—Temperature dependencies of tensile storage modulus (E'), loss modulus (E’), and loss factor (tan &) for the radial
specimen measured at 0.5, 1, 2, 5, and 10 Hz in the second cooling and heating runs of Procedure A.

energy. As earlier mentioned, the y-relaxation was attributed ~ in temperature mode, which could signify that the secondary
to the reorientation of the methylol groups in the wood cell ~ relaxations of wood in the cooling run needed more energy
walls (Sugiyama et al. 1998). In summary, the d-relaxation  to occur.

might be attributable to limited torsional vibration of groups

in the amorphous wood cell walls. Furthermore, the AH val- Conclusion

ues of d-relaxation and y-relaxation in the cooling run were The tensile £’ value of wood specimens was negatively
higher than those in the heating run, regardless of the changes correlated with the measured temperature. The d-relaxation,
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Figure 7—Temperature dependencies of tensile storage modulus (E'), loss modulus (E’), and loss factor (tan &) for the radial
specimen measured at 0.5, 1, 2, 5, and 10 Hz in the first cooling and heating runs of Procedure B.
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Table 2—The peak temperature of relaxations for radial specimens of dry wood at multiple frequencies ranging from 0.5 to 10 Hz

in the cooling and heating runs of Procedure A and Procedure B.

Peak temperatures of relaxations (°C)

d-relaxation

y-relaxation

Temperature spectrum Test parameters 0.5 Hz 1 Hz 2 Hz S Hz 10 Hz 0.5 Hz 1 Hz 2 Hz SHz 10 Hz
E” spectrum Procedure A
Ist cooling — — — — — —74.1 —70.2 —68.2 —62.3 —60.3
Ist heating — — — — — —64.3 —62.3 —58.3 —52.2 —48.3
2nd cooling —128.5 —-126.7  —123.2 —119.5 —115.8 —55.5 —53.6 —49.5 —41.7 -37.6
2nd heating — —126.5 —120.7 —116.8 —112.8 —46.7 —38.7 -36.8 —28.7 —22.7
Procedure B
Ist cooling —127.7 —124.1 —122.3 —118.9 —1159 —54.6 —51.6 —46.2 —42.7 —36.6
Ist heating —127.3 —124.1 —119.8 —116.8 —113.7 —44.6 —38.6 -32.7 —26.7 —22.0
2nd cooling —129.3 —126.5 —1240 -1184 —115.6 —57.2 —51.2 —49.7 —453 -39.3
2nd heating —128.3 —122.5 —119.5 —116.5 —113.5 —47.4 —384  -324 —-294 234
Tan § spectrum Procedure A
Ist cooling — — — — — —70.2 —68.3 —64.2 —58.3 —54.4
Ist heating — — — — — —64.3 —58.3 —523 —48.3 —42.2
2nd cooling —124.9 —123.1 —119.5 —115.8 —111.9 —53.5 —51.6 —45.6 -37.6 —33.6
2nd heating —120.8 —118.8 —112.7 —110.8 —108.8 —44.7 —38.7 —34.8 —24.7 —18.8
Procedure B
Ist cooling —127.7 —122.0 —1195 —113.9 —111.1 —52.0 —49.1 —46.1 —43.2 -37.0
Ist heating —1240 —1180 —1150 —112.0 —109.0 —37.0 —34.0 —28.0 —-220 —19.0
2nd cooling —124.9 —1234  —1213 —115.6 —109.8 —51.3 —50.2 —48.2 —423 —393
2nd heating —122.8 —122.5 —119.5 —110.5 —107.4 —47.4 —355 -29.3 —-234 204

v-relaxation, and B-relaxation of the radial specimens dried
over P,Os were detected in the E” or tan § temperature
spectra between —136°C and 120°C. Alongside the occur-
rence of P-relaxation, the E' value significantly decreased
with increasing temperature. Specimens with thermal his-
tory exhibited &-relaxation, with a corresponding tempera-
ture range of —129.3°C to —107.4°C, indicating that the
occurrence of mechanical relaxation was not related to
minor changes in MC or prolonged thermal treatment. Fur-
thermore, the y-relaxation was also influenced by thermal
history—its peak temperature shifted to a higher tempera-
ture range.

Significant differences in viscoelastic behavior were found
between specimens subjected to the cooling and heating
runs. The peak temperatures of d-relaxation and y-relaxation
in the cooling run were lower than those in the heating run,
while the AH of the relaxations showed a contrary tendency.

Table 3.—The apparent activation energy (AH) with coefficient
of determination (R?) of & -relaxation and y-relaxation in the E’
spectrum for radial specimens of dry wood in the cooling and
heating runs of Procedure A and Procedure B.

d-relaxation v-relaxation
Test parameters AH (kJ/mol) R’ AH (kJ/mol) R?
Procedure A
Ist cooling — — 74.28 0.986
Ist heating — — 69.30 0.989
2nd cooling 43.71 0.994 65.98 0.980
2nd heating 37.24 0.968 60.60 0.979
Procedure B
Ist cooling 49.87 0.991 71.87 0.987
Ist heating 42.25 0.987 63.29 0.992
2nd cooling 39.95 0.994 74.30 0.968
2nd heating 39.57 0.953 59.69 0.942
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A comparison revealed that the B-relaxation, which ranged
from 31.9°C to 37.6°C, was only observed in the heating run.
The peak temperature of B-relaxation showed no frequency
dependence, but its intensity decreased significantly with
increasing frequency. In contrast, the peak temperatures and
intensities of d-relaxation and y-relaxation showed frequency
dependence. The AH values of d-relaxation and y-relaxation
for the radial specimens of dry wood were 37.24 to 49.87 kJ/mol
and 59.69 to 74.30 kJ/mol, respectively. The AH of d-relaxation
was lower than that of y-relaxation, indicating that -relaxation
might be attributable to limited torsional vibration of groups in
the amorphous wood cell walls. These mechanical relaxations
attributed to specific substances in the wood cell walls and
their mechanisms under the action of the external environment
should be explored and investigated in depth to enrich the
body of knowledge about relaxations of dry wood in low-
temperature conditions.
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