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Abstract
The wood industry seeks innovative methods to improve process monitoring and adaptive control by modeling workpiece

characteristics. This study proposes a sensor fusion approach that integrates data from airborne sound, cutting forces, power
consumption, and acoustic emissions while milling diverse wood-based products. The objective of this research is to accurately predict
workpiece attributes, such as the density of the wood products to achieve strength grading and the roughness of the machined surfaces
to identify tool wear or unsuitable process parameters. To accomplish this objective, machine learning regression was employed by
training a model on the predictors chosen through supervised univariate feature ranking. Individual linear regression models per
workpiece type depended heavily on the material, where the validation R2 values ranged from 0.1 to 0.99, due to presplitting in the
case of samples machined across the fiber and porosity in the case of particleboard samples. A validation R2 of 0.99 could be achieved
for the collective modeling of density based on all the collected samples, with samples machined against the fiber being excluded.
Surface roughness could be predicted with a validation R2 of 0.91 by excluding samples machined across the fiber and particleboards.

The wood industry has long been interested in monitoring
machining processes. However, creating a comprehensive
monitoring system that covers all aspects of wood machining
is challenging for several reasons (Marchal et al. 2009). The
complex nature of wood as a natural material, characterized
by features such as knots and different fiber angles, makes it
difficult to determine optimal parameters for wood machin-
ing (Möhring et al. 2019). The effect of wood fiber angles on
the machining process is a prime example of this phenome-
non (Gottlöber 2004). When machining solid wood along the
fibers, the resulting surface quality is vastly different from
machining solid wood across the fibers (Csanády and Magoss
2013a). Furthermore, machining wood across the fibers can
increase tool wear rates (Csanády and Magoss 2013b).
Wood machining monitoring has been investigated in many

studies by using a variety of sensors (Lemaster et al. 1985,
Cyra et al. 1998, Aguilera and Martin 2001, Denaud et al.
2011, Dvoracek et al. 2022). For example, acoustic emis-
sion (AE) sensors, with a resonant frequency of 175 kHz,
were used for tool wear monitoring during wood machining.
Another study used ultrasonic AE to examine the use of
carbide-tipped tools and sawblades (Lemaster and Schultz
2016). A novel application of feed-forward neural networks
was used to examine the relationship between tool health and
airborne sound (AS) from 20 Hz to 20 kHz (Zafar et al.
2015). That study found that the results depended on the
wood species, where the tool health classification accuracy
was 78 percent when machining softwood and 97 percent
when machining hardwood. Another application with AS can

be found in Zhu et al. (2002), where tool wear was investi-
gated with a microphone that measured AS up to 100 kHz.
The analysis was based on the ratio of AS energy between
consecutive teeth.
Additionally, surface roughness has been investigated in

many studies. For example, the effect of the tool geometry
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on AS and surface roughness was investigated by Cyra et al.
(1998), with a focus on the relationship between the helical
angle of drill bits and AS (4–100 kHz) generated during wood
drilling. The surface roughness was modelled with the AS
event count, where a Pearson correlation coefficient between
0.76 and 0.99 was found. Another AS feature that can be used
for surface roughness prediction is the sound pressure level
(SPL). By measuring the sound of wood milling with two
microphones, Iskra and Tanaka (2005b) obtained a Pearson
correlation coefficient of 0.98 when modeling surface rough-
ness with SPL.
Aguilera et al. (2006) discussed the correlation between

AE and surface roughness while milling solid wood. The poly-
nomial fit had an R2 value of 0.59 for a milling head with two
knives, whereas a milling head with four knives had a slightly
higher R2 at 0.66. Further studies that discuss AE as a means
to monitor production processes in the wood industry include
Aguilera (2010), Aguilera and Barros (2010), and Murase
et al. (2008).
The potential of multisensor systems to further improve

process monitoring during wood machining has been inves-
tigated by several studies (Aguilera and Barros 2011, Möhring
et al. 2019, Nasir et al. 2019). Handling data from multiple
sources also requires tailored analysis techniques, which may
include the usage of dimensionality reduction and artificial
intelligence. For example, the D9203B AE sensor, with a sen-
sitivity from 100 to 1,000 kHz, was used together with other
sensors to monitor sawing processes (Nasir et al. 2021). Then,
an artificial neural network was trained using fuzzy logic to
select features and predict the process quality. Aguilera et al.
(2016) also studied a multisensor system to monitor wood
milling processes. The loudness of AS was found to correlate
with the feed speed and dimensions of the machined chips.
Electric current was also studied—it was investigated as a
response to be predicted when the chip thickness and the feed
speed were taken as predictors. Finally, a training accuracy of
96.6 percent to differentiate between machined materials was
achieved by employing machine learning classification with
the purpose of autonomous control of the machining process
(Eschelbacher et al. 2019).
The usage of a new AS microphone, based on laser inter-

ferometers (Fischer 2016), to study wood machining was
explored by Derbas et al. (2021, 2023). In these studies, it
was shown that wood milling processes can be monitored
by using the sound of singular cuts, which were segmented
from the measured signals.
The present research aimed to predict the density and sur-

face roughness of milled wood products using signals acquired
during milling such as cutting forces, AE, AS, and power con-
sumption. To achieve this, five distinct wood-based materials
and five different solid wood samples were investigated. Each

material was tested at one cutting speed. From the measured
signals, features were calculated and chosen for the regression
task through the application of univariate feature ranking. The
regression task was then divided into two separate categories:
linear models for individual materials and regression trees for
all materials collectively.

Materials and Methods

Samples and process components

The current study focused on the machining of engineered
wood products and solid wood (Fig. 1). The samples were
cut to have a length of 100 mm, a width of 200 mm, and a
thickness of 30 mm.

Ten different types of workpieces were used in the present
study (Table 1). The density of each sample was calculated by
measuring the weight with a precision scale and dimensions
with a measuring tape. The Alicona Infinite Focus G5 digital
microscope from Bruker Alicona Imaging GmbH (Raaba,
Austria) was used to measure the surface roughness, Rz,
taken as the average peak-to-valley height of the profile
(Deutsches Institut f€ur Normung Normenausschuss Techni-
sche Grundlagen 2009) at three locations (start, middle, end)
on the machined side of each sample with a scanned length of
12.5 mm. These measurements were used as responses to be
predicted by using the signal features from the sensor signals.

The machining was executed on a MAKA PE 170 5-axis
CNC machine (Fig. 2) from MAKA Systems GmbH (Ner-
singen, Germany). The milling head from Leitz GmbH &
Co. KG (Oberkochen, Germany) had a diameter of 125 mm
and a rake angle of 158. It was equipped with one cutting edge
(wedge angle of 558, giving a clearance angle of 208) on one
side and a counterweight on the other. The cutting speed was

Figure 1.—Tested workpiece types after machining.

Table 1.—Summary of workpiece types and properties.

Materiala
Density

(kg/m3)

Surface

roughness, Rz (lm)

(A) Beech (Fagus sylvatica) 640 6 10 87 6 40

(A) Oak (Quercus rabor) 591 6 78 196 6 109

(A) Spruce (Picea abies) 431 6 11 161 6 98

Beech (Fagus sylvatica) 646 6 5 74 6 12

Spruce (Picea abies) 365 6 23 22 6 6

Multiplex 603 6 18 37 6 5

PB 618 6 10 197 6 299

PB lam. 584 6 6 73 6 21

MDF 634 6 6 77 6 14

MDF lam. 640 6 7 67 6 10

a A ¼ samples machined across the fiber; PB ¼ particleboard; lam. ¼
laminated samples; MDF ¼ medium density fiberboard.

Figure 2.—MAKA PE 170 CNC.
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set to 60 m/s, with a feed speed of 11 m/min and a rotational
speed of 8,982 rotations per minute (rpm). The cutting depth
was set at 5 mm, which gave an average chip thickness of
0.24 mm and a feed per tooth of 1.23 mm per tooth.
Each experiment was repeated five times using a random-

ized design, resulting in a total of 50 runs. Additionally, the
properties of the machined samples were measured at the start,
midpoint, and end of the machined length, yielding a data set
of 150 records.

Sensors and acquisition

The machining process was monitored by a total of four
sensors (Table 2).
The AE sensor was attached to the sample holder (Fig. 3b).

The ETA 250 Ultra was attached with a sensor arm to the
spindle housing and placed at a distance of 100 mm from the
cutting tool (Fig. 3a). AE and AS signals were recorded with
the HFIM Optimizer 4D acquisition system from QASS
GmbH (Wetter, Germany). The sampling frequency was set to
1.6 MHz for AE and to 2 MHz for AS.
The cutting forces, determined by a type 9272 dynamome-

ter (Fig. 3c) and amplified by three type 5015A charge ampli-
fiers (Winterthur, Switzerland), were measured at the sample
holder and recorded in axial, lateral, and normal directions.
The sampling frequency for all three forces was set to 1 kHz,
and the acquisition was done by a BNC 2110 data acquisition

card and the LabVIEW software from National Instruments
(Austin, Texas).
The WT330 power meter (Fig. 3d) was used to measure the

power consumption of the machining process. These measure-
ments were done directly on the motor of the spindle and
imported to a laptop through a universal serial bus (USB) port.

Machine learning

Feature selection was done by supervised univariate fea-
ture ranking to ensure that only relevant predictors were
used for training the model, as including irrelevant predic-
tors could be detrimental to the training of the models. For
regression problems, this could be done by calculating the
importance score (Eq. 1) based on the p value of an F test.
In MATLAB, this is implemented in the fsrftest function. A
threshold was defined at a confidence level of 5 percent.
Important predictors were associated with a p value below
0.05 and therefore a higher importance score. On the other
hand, irrelevant predictors will have a low importance score
and a higher p value (Kuhn and Johnson 2019).

Importance ¼ �log pð Þ (1)

Individual models for each material were based on linear
models and were trained by the fitrlinear MATLAB function.
For collective modelling, regression tree models were used by

Table 2.—Measurement types and sensors.

Sensor Producer Measurand Sampling

ETA 250 Ultra XARION GmbH (Vienna, Austria) Airborne sound 10 Hz to 1 MHz 2 MHz

QWT-MCX QASS GmbH (Wetter, Germany) Structure-borne sound 5 Hz to 1 MHz 1.6 MHz

Dynamometer type 9272 Kistler Group (Winterthur, Switzerland) Cutting forces in three axes 1 kHz

WT330 power meter Yokogawa Electric Corporation (Tokyo, Japan) Power consumption 10 Hz

Figure 3.—Experiment setup with (a) ETA 250 Ultra, (b) QWT-MCX acoustic emission (AE) sensor, (c) Dynamometer type 9272,
and (d) WT330 digital power meter.
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means of the MATLAB fitrtree function. In both cases, the
default hyperparameter values were used (Table 3).
All models were validated using k-fold cross-validation

with five folds. For each fold, a model was trained and tested
on different subsets of the design matrix to include all the
records in the data set (Fig. 4). Finally, the predictions were
concatenated and used to calculate the fit and error metrics.
For the linear models, this amounted to 12 records for training
and three records for validation of each fold. The regression
tree approach on the other hand was trained on 120 records and
validated on 30 records for each fold. A special case for the par-
titioning was specified in the case of the regression trees, where
the 30 records for validations were uniformly selected from all
workpiece types, giving three records for each workpiece type.
This ensured that none of the ten different workpiece types was
under- or overrepresented in the model training and validation.

Results and Discussion

Signal preprocessing

All signals were imported into the MATLAB environment.
The goal was to identify regions of interest in the signals and
to calculate features that could act as predictors for the mea-
sured responses, which in this case would be the density of the
machined sample and the resulting surface roughness.
For AE and AS (Fig. 5), the signals had a very high tempo-

ral resolution and therefore could be segmented into individual
cuts, as was done in Derbas et al. (2023). The cut detection
method was based on peak detection and set optimization.
From these cuts, signal features were calculated, grouped, and
averaged. In this case, the root mean square (RMS) was cho-
sen as a loudness parameter, and the mean frequency, calcu-
lated with the meanfreq MATLAB function, was chosen as a
frequency representation.
Similarly, the power data (Fig. 6) were split into three por-

tions to represent the start, middle, and end of the machined

length of the samples. The power consumption was calculated
by multiplying the measured voltage by the current.

Cutting forces (Fig. 7) were acquired for three directions,
and the RMS feature was taken to represent the intensity of
the forces.

Regression analyses

Surface roughness, Rz.—After feature selection for
each material, the training of individual models showed that
the outliers for Sample Sets A and PB were causing signifi-
cant problems in the training and validation of the mod-
els. Otherwise, the models for the other materials had a
good fit (Fig. 8), with R2 values ranging from 0.84 to
0.95. The most important feature in this case was observed to
be the AS loudness feature (RMS).

All materials in the regression tree led to poor fitting and
feature importance results (Fig. 9). This can be attributed to
the measurements on the A and PB samples, due to the bad
surface finish and the porous surface, respectively. Three
variables did not meet the feature importance threshold,
while those that did only slightly surpassed the set value at
a confidence level of 5 percent. The validation R2 was 0.17,
and the root mean square error (RMSE) was 139.4 lm. The
model also underestimated the actual values, since the
majority of the least square lines fell under the perfect fit.
This can be attributed to the outliers from the PB samples.

After excluding the records that were attributed to the A
and PB samples, the feature selection and the regression fit
improved significantly (Fig. 10), where all but one variable
had a significant importance score. Material type and the cut-
ting forces were the predictors with the highest importance

Table 3.—List of default hyperparameters in the MATLAB environment.

Model Hyperparameter Description Default

Regression tree model

fitrtree

MinLeafSize Minimum number of observations per tree leaf 1

MaxNumSplits Maximum number of splits for the decision tree all

NumVariablesToSample Number of predictors to select for each split all

Linear model

fitrlinear

Lambda Regularization term log-scaled

Learner Type of learner svm

Regularization Regularization technique rigde

Figure 4.—k-fold cross-validation process.

Figure 5.—Exemplified acoustic emission (AE; top) and air-
borne sound (AS; bottom) measurements for a spruce sample
and the calculated RMS values.
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scores. The fit improved to a validation R2 value of 0.91 and
RMSE of 9.9 lm. Some clusters could be readily identified,
such as the clusters of the spruce and multiplex samples, as
opposed to the other clusters, which included beech and
medium-density fiberboard (MDF) samples. While the indi-
vidual models achieved lower R2 values than the collective
model (p , 0.05), the RMSE was seen to be lower for the
individual models as well (p , 0.05). As there was a need to
exclude samples of a specific wood product during the collec-
tive modelling, it would be better to use individual regression
models to identify the limitations that arise when measuring
accurate values for surface roughness in the case of A and PB
materials. Predicted surface roughness can be used as a sign of
increased tool wear or unsuitable process parameters, enabling
early reaction to avoid elongated downtime due to tool failure.
The monitoring of wood machining to predict surface

roughness can be found in the current literature. For example,
SPL was used to monitor the process of machining MDF
boards to predict surface roughness Rz. The fitting on a total
of four data points per variation led to R2 values between
0.73 and 0.94 (Aguilera and Barros 2011). As a comparison,
the current study had 15 records per variation and an R2 of
0.89 (RMSE ¼ 8 lm) for MDF and an R2 of 0.94 (RMSE ¼
4 lm) for laminated MDF in validation. Similarly, a study by
Iskra and Hernández (2010) evaluated the monitoring of the
machining of hardwood along the fiber (white birch, Betula
papyrifera Marsh.) with a microphone to predict the surface
roughness Rz. The results showed an R2 of 0.81 and an RMSE
of 3.04 lm. Analogously, the current study found similar
results for beech samples machined along the fiber, with
an R2 value of 0.89 and a higher RMSE at 8 lm. Finally,
the relationship between AS RMS and surface roughness
Rz can be clearly seen in Figure 11.

This correlation was observed by many other authors
(Iskra and Tanaka 2005a; Aguilera 2009, 2010; Iskra and
Hernández 2009, 2010; Aguilera and Barros 2010, 2011) in
the current literature and could be refined in the current study,
as this correlation was established for more materials in the
same experimental design.

Density.—Individual linear models to predict the density
of the machined samples, after feature selection for each
material, showed a good fit for all materials except for the
samples machined across the fiber (Sample Set A). This can
be attributed to the sporadic presplitting during machining,
which significantly influenced the raw data. An example of
the linear fitting to predict the density of the machined samples
can be seen in Figure 12. Power consumption and cutting
forces were observed to be the most important variables.
The feature ranking showed that material type was the most

important predictor (Fig. 13), followed by the mean frequency
of AE and power consumption. As opposed to including all
materials for the prediction of surface roughness, including all
materials for predicting density did not affect the R2 fit metric
(R2 around 0.95). On the other hand, the data points asso-
ciated with Sample Set A caused high error, with an RMSE of
28.9 kg/m3.
Excluding Sample Set A from the models improved the

R2 value from 0.95 to 0.99 and reduced the RMSE error from
28.9 kg/m3 to 11.1 kg/m3 (Fig. 14).

Figure 7.—Exemplified cutting forces RMS for a spruce sample
in all three directions.

Figure 6.—Exemplified power consumption for a spruce sample.

Figure 8.—Actual versus predicted linear models for the pre-
diction of surface roughness (Rz) in validation.
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Comparison of the collective and individual modelling of
the density revealed that while the R2 value was higher for
all materials in the collective model (p, 0.05), the correspond-
ing RMSE was also higher (p, 0.05). This can be attributed to
an ecological fallacy, where predictions across groups might
lead to the exaggeration of the goodness of fit while also
increasing the error for all individual groups (Lubinski and
Humphreys 1996). Therefore, using linear regression for
modelling the density would be preferred, as the collective
modelling primarily captured the variance found between the
different categorical wood products. No other study could be
found that focused on the prediction of the machined sample
density. The application of such a predictive model in manu-
facturing processes can enable, e.g., strength grading, as the
mechanical performance of wood is highly correlated with
density (Shelly 2001).

Conclusion
In conclusion, the current study aimed at enhancing process

monitoring and adaptive control in the case of wood milling
by proposing a sensor fusion approach. Ten different types
of workpieces were tested, including five engineered wood
products and five solid wood samples with different species
and cutting directions. Data from acoustic emissions, airborne
sound, cutting forces, and power consumption were integrated

Figure 9.—Feature importance plot (top) and validation predic-
tions versus actual values for surface roughness, all materials.

Figure 10.—Feature importance plot (top) and validation pre-
dictions versus actual values for surface roughness with Samples
Sets A and PB excluded.

Figure 11.—Correlation between surface roughness Rz and
airborne sound (AS) RMS.
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during milling to accurately predict workpiece attributes such
as density and surface roughness. Next, data were preprocessed,
the most important features were selected, and machine learning
regression was applied. The models exhibited varying perfor-
mance, with validation R2 values ranging from 0.1 to 0.99.
Notably, a validation R2 of 0.99 was achieved for collective
density modeling, excluding samples machined against the
fiber. Surface roughness prediction yielded a validation R2

of 0.91, excluding samples machined across the fiber and
particleboards. Individual linear models for each material
made it easier to identify the outliers that caused difficul-
ties in training the models for samples machined across
the fiber and particleboards. It is important to acknowl-
edge the inherent complexity in modeling across various
materials as well, where surface roughness measurements
on particleboards and samples machined across the fiber
led to data that could not be modelled together with data
from other samples. Similarly, a collective model to pre-
dict the density of the machined samples would have a
high error due to the significant density differences across
wood species and engineered wood products.
Application of these types of models in the industry will

add insight into the current status of the machining process
as well as the expected quality of the manufactured products.
To do so, models need to be adapted to work with new data
and to continuously learn from monitored processes.

Figure 12.—Actual versus predicted linear models for the predic-
tion of machined sample density in validation.

Figure 13.—Feature importance plot (top) and validation predic-
tions versus actual values for density, all materials.

Figure 14.—Feature importance plot (top) and validation pre-
dictions versus actual values for density with Sample Set A
excluded.
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C. Zizelmann, A. Häusler, and C. Menze. 2019. En route to intelligent

wood machining—Current situation and future perspectives. J. Mach. Eng.

19(4):5–26. https://doi.org/10.5604/01.3001.0013.6227
Murase, Y., K. Matsumoto, and T. Ohuchi. 2008. Acoustic emission and

cutting resistance in cutting of solid wood, MDF and particleboard. J.

Fac. Agric. Kyushu Univ. 53(2):485–490. https://doi.org/10.5109/12862
Nasir, V., J. Cool, and F. Sassani. 2019. Intelligent machining monitoring

using sound signal processed with the wavelet method and a self-organizing

neural network. IEEE Robot. Autom. Lett. 4(4):3449–3456. https://doi.

org/10.1109/lra.2019.2926666

Nasir, V., S. Dibaji, K. Alaswad, and J. Cool. 2021. Tool wear monitor-

ing by ensemble learning and sensor fusion using power, sound, vibra-

tion, and AE signals. Manuf. Lett. 30:32–38. https://doi.org/10.1016/

j.mfglet.2021.10.002
Shelly, J. R. 2001. Wood: Materials for furniture. In: Encyclopedia of

Materials: Science and Technology, 2nd ed., K. H. J. Buschow, R. W.

Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P.

Veyssière (Eds.). Elsevier, Oxford, UK. pp. 9658–9662. https://doi.

org/10.1016/B0-08-043152-6/01750-2
Zafar, T., K. Kamal, Z. Sheikh, S. Mathavan, A. Jehanghir, and U. Ali.

2015. Tool health monitoring for wood milling process using airborne

acoustic emission. In: Proceedings of the 2015 IEEE International Con-

ference on Automation Science and Engineering (CASE), August 24–28,

2015, Gothenburg, Sweden; Institute of Electrical and Electronics Engi-

neers (IEEE), New York.
Zhu, N., C. Tanaka, and T. Ohtani. 2002. Automatic detection of dam-

aged bandsaw teeth during sawing. Holz Roh Werkst. 60(3):197–201.

https://doi.org/10.1007/s00107-002-0291-3

8 DERBASETAL.

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-30 via O
pen Access.

https://doi.org/10.1007/s00107-009-0396-z
https://doi.org/10.1007/s00107-009-0396-z
https://doi.org/10.1007/s00107-010-0481-3
https://doi.org/10.4067/s0718-221x2010000300001
https://doi.org/10.4067/s0718-221x2010000300001
https://doi.org/10.1007/s00107-011-0528-0
https://doi.org/10.1007/s00107-011-0528-0
https://doi.org/10.1007/s001070100243
https://doi.org/10.1016/j.wear.2015.12.011
https://doi.org/10.1016/j.wear.2015.12.011
https://doi.org/10.1007/s00226-006-0117-2
https://doi.org/10.1007/s00226-006-0117-2
https://doi.org/10.1007/BF00521959
https://doi.org/10.1007/s00107-011-0549-8
https://doi.org/10.1080/17480272.2023.2214118
https://doi.org/10.1080/17480272.2023.2214118
https://doi.org/10.1080/17480272.2021.1955296
https://doi.org/10.1080/17480272.2021.1955296
https://doi.org/10.1007/s00226-010-0378-7
https://doi.org/10.1007/s00226-010-0378-7
https://doi.org/10.1007/s00226-005-0059-0
https://doi.org/10.1007/s00226-005-0059-0
https://doi.org/10.1007/s00107-004-0541-7
https://books.google.at/books?id=q5alDwAAQBAJ
https://doi.org/10.1080/17480272.2016.1146798
https://doi.org/10.1080/17480272.2016.1146798
https://doi.org/10.1016/0043-1648(85)90081-X
https://doi.org/10.1515/hf.2009.014
https://doi.org/10.1515/hf.2009.014
https://doi.org/10.5604/01.3001.0013.6227
https://doi.org/10.5109/12862
https://doi.org/10.1109/lra.2019.2926666
https://doi.org/10.1109/lra.2019.2926666
https://doi.org/10.1016/j.mfglet.2021.10.002
https://doi.org/10.1016/j.mfglet.2021.10.002
https://doi.org/10.1016/B0-08-043152-6/01750-2
https://doi.org/10.1016/B0-08-043152-6/01750-2
https://doi.org/10.1007/s00107-002-0291-3

