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Abstract

In order to be utilized in the design of a wood building, the lumber must pass grade. Machine-vision inspection grading
offers higher efficiency and accuracy than traditional manual visual grading. In this paper, a fast and accurate method for
identifying defects in large-size structural lumber based on machine vision of Fujian Chinese fir (Cunninghamia lanceolata
(Lamb.) Hook) constructional lumber (FCF CL) is proposed. Specifically, the grey matrix of the captured images on the
surface of the sawn timber is initially scanned and the pixel weights on the edges of the image greyness variables are
calculated. A matrix-valued torus was formed by fitting the knot edge profile and analyzing changes in the gradient values
at the knot’s edge, as well as calculating the directional derivative’s rate of change. The knot three-dimensional mapping
curves were projected onto the plane to form horizontal rise contours. Observe from the contour map of the whole large-
size sawn timber, and extract the positional information of the knot where there is a trough (groove).
The test results show that the rRMSE (Relative Root Mean Square Error) measured at the x axis position of knots is

within 0.49 percent; the rRMSE measured at the y axis is 0.35 percent, which has high detection accuracy and meets the
production requirements. We also investigated the effect of knots in different positions on the modulus of elasticity and the
bending strength of FCF CL, with a view to establishing a link between machine-vision knot detection and mechanical
properties of sawn timber in our next work.

T he use of wood in construction is a crucial step
toward creating a habitable environment. Modern timber
constructions have gained popularity throughout developed
North America, Europe, and Asia (Hyun et al. 2018,
Panagiotis et al 2018). The extensive utilization of wood in
building construction has made it imperative for the wood
processing industry to improve its technological profi-
ciency, production efficiency, and automation (Devaru and
Gopalakrishnan 2020). China has the biggest plantation sys-
tem in the world, but because of inadequate automatic
detection and quality grading of native tree species, the
resource-rich plantations cannot be used to produce struc-
tural materials for buildings (Ahn et al. 2021). The main
component of structure buildings is load-bearing timber. Its
mechanical qualities and strength grade have a significant
influence on encouraging the use of prefabricated, multi-
story timber constructional buildings and are directly tied to
the safety of such structures (Chang et al 2018, Park et al.
2021). The mechanical strength of structural lumber is rap-
idly and precisely detected, evaluated, and classified into dif-
ferent grades based on the flexor elastic modulus and defect
distribution characteristics (particularly the knot distribution),
in accordance with the load-bearing requirements of wood con-
structional buildings (Zhao et al 2019). The various stress struc-
tures of large-span and multi-high-rise buildings are applied

with graded lumber. It is a key factor in enhancing the overall
rate of building material use as well as the safety quality of
wood construction (Gu et al. 2010, Qiu et al. 2019, Blokland
et al. 2021).
A common structural timber species, Fujian Chinese fir

(Cunninghamia lanceolata (Lamb.) Hook; FCF) has a broad
planting area and mechanical and physical attributes like
strong impact, straight texture, fine structure, and resistance
to corrosion (Tian et al. 2021). FCF lumber is distinctive
when compared to other wood species, and many of the
existing algorithms are challenging to use to identify FCF
defects (Su et al. 2021). Because more dead or live branches
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are buried in the main branches or trunk of FCF during
growth, structural lumber displays noticeable knot defects
(Kang et al. 2017). Furthermore, additional knots will develop
in the FCF tending process as a result of both natural and arti-
ficial trimming, which is not optimal (Yue et al. 2020). In
contrast to other tree species, FCF lumber has a relatively
high ratio of knot diameter to width of the lumber (Wang
et al. 2020b). The FCF knot weakens the wood’s strength,
tilts the wood fiber, and ruins the homogeneity of the lum-
ber structure (Yue et al. 2017). FCF lumber has a higher
degree of hardness in dense knot areas, which makes it
more difficult to saw, and more prone to cracking when
dry. These factors significantly lower the amount and
grade of structural lumber available (Zhan et al. 2019).
Identifying the knot defect in the FCF lumber is therefore
very important for the safety domain stability of the appli-
cation of wood construction materials (Kopp et al. 2020,
Burawska-Kupniewska et al. 2021).
With the advancement of science and technology, the

processing and production of wood are moving toward auto-
mation, intelligence, and flexibility (Kopp et al. 2020). This
calls for the use of sophisticated technical tools to replace
manual and traditional methods of defect detection (Yuan
et al. 2020). Technological methods employed in the wood
processing sector nowadays include ultrasonic, X-ray, stress
wave, and machine-vision detection in addition to manual
visual inspection (Tu et al. 2021). In recent times, machine-
vision detection has gained popularity as a detection technol-
ogy and is being used in various industries, including manufac-
turing, construction, and medical (Castellanos et al. 2021).
Instead of employing the human brain and eyes, this technol-
ogy uses computer processors and cameras to analyze the
images for target detection. As image processing technology
keeps continuing to advance, machine-vision technology
affords more options for developing wood inspection business
methods.
High automation, high detection accuracy, and high detec-

tion efficiency are some of the advantages of machine-vision
inspection over other nondestructive testing techniques includ-
ing stress wave, ultrasonic, X-ray, and others (Kamal et al.
2017). The visual grading and machine grading methods
for structural timber were compared by M. Brunetti et al.

(2016) of the University of Turin in Italy. The results of
the study indicated that the machine grading has an elevated
level of flexibility and may significantly boost production
efficiency. Two feature detection algorithms were coupled
by T. Pahlberg et al. (2015) of Lulea University of Technol-
ogy in Sweden to look into the automatic matching and rec-
ognition procedure for Scottish pine(Pinus sylvestris)
lumber. A new machine vision–based approach for the auto-
matic detection of structural lumber was proposed by K.
Kamal et al. (2017) of the National University of Science
and Technology in Islamabad, Pakistan. The approach uses
a feed-forward back-propagation neural network, texture
feature extractor, and gray co-occurrence matrix as classifi-
ers. Gray co-occurrence matrix, local binary mode, and sta-
tistical moment methodologies have been incorporated by
A. Mahram et al. (2012) of Urmia University in Iran to pro-
vide superior feature extraction techniques and patterns for
knot classification and recognition. The dimension eigen-
vector has been diminished using principal component anal-
ysis, linear discriminant analysis, support vector machine,
and K-nearest neighbor.

The most widely utilized techniques currently in use for
image identification of large-size structural lumber (the lumber
length range in this research is greater than 4,000 mm) are
image pyramid, multiscale sliding window detection, data
enhancement, and image segmentation recognition (Viguier
et al. 2017, Wang et al. 2020a, Pang et al. 2021). Nevertheless,
the aforementioned techniques for small-target picture recog-
nition necessitate a more complicated program structure and a
more complex target recognition model (Ramage et al. 2017,
Panwar et al. 2020, Longo et al. 2019). Even so, there are
certain drawbacks with this approach, including low defect
detection efficiency and subpar real-time performance in
applications that are practical. This is mostly since imperfec-
tions constitute only up to a tiny fraction of the large-size
image of the lumber’s exterior (Ashok et al. 2021, Wright
et al. 2019). The “invalid” identification employment con-
sumes an enormous amount of time during the defect detec-
tion process for lumber images if the entire surface image is
acknowledged by the deep learning algorithm model (Pan
et al. 2021). Prior to the method’s determination, we investi-
gated the detection technique. In conjunction with the

Figure 1.—Fujian Chinese fir constructional lumber.

186 JI ET AL.

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2024-12-21



features of large-size FCF sawn timber detection, the YoLo
algorithm’s sizing is limited to 640 pixels by 640 pixels for input
images; for sawn timber sizes greater than 2 m (2,048 pixels by
24,576 pixels), the algorithm is ill-suited for large-scale sawn
timber detection. Thus, we developed a technique to identify
FCF knots.
This work presents an approach of locating, detecting,

and conducting digital nondestructive testing of enormous
lumber knot defects via image defect features in order to
address the issues with the tiny-target detection process of
large-sized lumber. Locating and searching for FCF defects
is an essential initial stage toward assessing the mechanical
qualities of FCF plantation structural wood. Then, we sawed
structural lumber according to the characteristics of FCF and
the large-size lumber knot detection and positioning result,
and carried out mechanical tests to explore the effect of dif-
ferent knot positions on the mechanical tests of sawn timber,
in order to further improve and optimize the machine-vision
knot detection system. We have developed our own equip-
ment for testing and grading the mechanical properties of
structural sawn timber, and we hope to establish a link
between mechanical stress grading and machine-vision grad-
ing, and further combine the advantages and shortcomings of
the two testing methods. This procedure will also yield
essential preliminary data for the structural design and
performance enhancement of structural lumber bearing
materials, hastening the use of structural wood in China’s
industrial sector.

Materials and Methods

Materials

For the experiment, FCF of the second generation from
Shunchang County, China, was utilized. The collection of
FCF complied with relevant institutional, national, and inter-
national guidelines and legislation.
The trees were between 20 and 30 years old, with a 180-

to 250-mm diameter at breast height. The moisture content
of the tested FCF constructional lumber (CL) is between 12
and 15 percent, in accordance with EN 13183-1:2002 (The
European Standard EN 13183-1:2002). FCF CL has an
average density of 0.40 g/cm3. A number of timber pieces
featuring varying surface knots were chosen in order to
assess and confirm the viability of the search and localiza-
tion strategy used in this investigation. The Shengsheng
Wood Industry Co., Ltd., in Shunchang County, Fujian
Province, China, completed the factory application experi-
ment (Figs. 1 and 2; Table1).

Methods

By combining the surface characteristics of the FCF CL,
we created a reliable knot localization algorithm. To locate
knots in FCF CL, a scanning image was processed using the
proposed approach. After the logs were cut into 40 by 140
by 4,000-mm lumber, it was further processed into several
17 by 38 by 330-mm little test specimens. The machine-
vision technology was utilized to scan the image of the lum-
ber using the four-faced sawing method. An algorithm was
then used to process the acquired image in order to locate
and search for knots in the FCF CL. The primary hardware
components needed for the machine-vision system we
designed are a camera, a light source, an encoder sensor,
photoelectric sensor. The image that was gathered has 24-
bit RGB color, resolution 204812288, and 300-lx illumina-
tion. Ultimately, using mechanical testing machinery, the
impact of knots on the bending resistance of FCF CL was
investigated. Figure 3 depicts the research procedure for
finding knots of the FCF CL. The height is represented by a
thickness of 17 mm. When sketching, we visually exhibit
the width side in the graph to make the knot evident to the
reader. Five hundred pieces of lumber were put to use in the
machine-vision knot-localization detection experiment. We
performed six groups of mechanical testing on FCF CL dur-
ing the three-point mechanical experiment, with 20 speci-
mens in each group. The average density of FCF CL in two
sets of studies was 0.3 to 0.5 g/cm3, and the FCF CL had
knots that were dispersed randomly across the surface of
timber samples.
Compared to the visual grading method, machine-vision

grading is a more efficient and practical grading approach.
Knots primarily affect a lumber’s mechanical qualities. The
knot area and nonknot area of structural lumber’s gray val-
ues were processed using the FCF knot anisotropy and gray
characteristics. A number of vacuum areas far from the
knots were deleted, the misfitting issues other than the lum-
ber knots were resolved, and the loss of edge information
was successfully prevented. It was discovered that the edge
of the FCF knots encircled the protruding and connected
area. Small holes were filled, the fractures in the contour
line were divided, the narrow discontinuities and thin gullies
that arise in the knot placement were bridged, and several
small-connected knots were divided. In order to improve
position identification accuracy and lessen the impact of the
FCF’s surface properties on knot feature extraction, we merged
the aforementioned techniques. A wave trough, or groove,
occurred at the profile line in the gradient change of the gray-
value contour line. The knot region was searched, the knot’s
contour was fitted, and the knot’s position was further
investigated. Figure 4 depicts the search for knots of the
FCF CL. We have been attempting to investigate and estab-
lish a connection between the mechanical characteristics of
sawn lumber and visually observed knot problems. The

Table 1.—The density of Fujian Chinese fir.

Tree species Density Average

Fujian Chinese fir 0.3–0.5 g/cm3 0.40 g/cm3

Figure 2.—Characteristics of knots of Fujian Chinese fir constructional lumber.
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“Results” section “Effect of knots on bending resistance of
FCF CL” examines the impact of knots in various locations
on the mechanical characteristics of mechanically sawn tim-
ber, as knots play a significant role in lowering the mechanical
properties of sawn lumber. It is intended that the sawn timber
would be evaluated through statistical consideration and analy-
sis of knots and knot position.
We divided the knots of FCF sawn timber into dead knots

and live knots, and the live knots were further divided into
round knots and edge knots, as shown in Table 2. The posi-
tioning method introduced is able to discern three kinds of
knot color changes.

Structural design of lumber detection system based
on machine-vision technology.—The sensors of the
image data acquisition and detection equipment mainly cap-
ture images from the camera and red-stripe light source. The
horizontal measuring instrument is used to measure the angle

between the light source and the camera in a vertical direction.
The FLUKE illuminometer is used to measure the illumination
of the light source. The position of the detection system sensor
and light source is shown in Figure 5. We adjusted the inclina-
tion degree of the strip light and the vertical angle between the
camera to 608 and kept it fixed. A light source device was
designed which can automatically adjust the height and bright-
ness. The device had a wide transverse radiation range and
high brightness to better distinguish the object from the back-
ground. By adjusting the appropriate light source, the character-
istics of FCF could be clearly captured, which was conducive
to the processing and analysis of the acquired images.

We scanned and imaged the bark stump face image data
of the tree species. The camera scanned the image data
under the lens and sent the final image to the computer for
image processing. Different tree species were photographed
using a Basler raL2048-48 gm line-scan camera with 2,048
pixel per line resolution and 51 kHz line-scan rate. The cam-
era was from the German Basler manufacturing company,
located in Ahrensburg, Germany, founded in 1988, which,
with 30 years of experience in the field of vision technology,
is the world’s leading computer vision expert. The following

Table 2.—Samples image of different types knot defects in
Chinese fir sawn timber.

Figure 3.—The procedure for locating knots in Fujian Chinese fir constructional lumber.

Figure 4.—The algorithm used to locate knots.
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is the basic information of the obtained images: 2,048 by
2048 pixels, and a bit depth of 8. First, different tree species
images were collected and annotated, then image transforma-
tion expansion was performed and finally the tree species’
instance segmentation model was trained to achieve tree spe-
cies recording and recognition.

A preliminary searching of gray matrix on surfaces.—The
term “anisotropy” describes sawn timber’s varying mechani-
cal and physical characteristics along its grain. Wood’s
structure causes it to exhibit different strength, elasticity,
and other properties along the annual rings (known as the
chordal direction), perpendicular to the rings (known as the
radial direction), and in the direction of the wood grain
(known as the longitudinal or axial direction). Wood is pri-
marily composed of cellulose, hemicellulose, and lignin.
For instance, wood often has a substantially higher tensile
strength in the direction of the grain than in the chord direction.
For wood processing, design, and engineering applications, this
anisotropic feature is crucial. It must be used and developed suit-
ably in accordance with the various directional qualities of
wood.
Knots are the primary defect in sawn timber, based on

the features of the actual FCF. The color of sound knots is a
distinct shade of grey relative to parts of wood free of
defects. In the manuscript, we display images of both living
and dead knots in Figure 6.
In Figure 7, the distribution coordinates have been

established, the length direction is the x axis, the width
direction is the y axis, and the upper left corner of the lum-
ber is the coordinate origin in the knot search and position
of FCF CL.
Each pixel in the grayscale image of lumber was read

out, and after median filtering, the proportion of transverse
and longitudinal scanning was used to convert the grayscale

value into the actual position point coordinates of the lum-
ber (Viguier et al 2015, Kandler et al 2016, Jenkel et al
2018). There were outliers 71 and 75 in the lumber gray
value reading, which could be related to the light-colored
area that occurs inside the knot. The gray value in the
closed-loop connected domain of 60 value also exhibited a
dramatic fall. There were outliers of 18, 20, 27, and 35
outside the 60-value closed-loop linked domain. As seen
in Figure 7, the sources of the outliers in this region could
include digital noise in the images, scanning distortion,
light effects, dark stains on the lumber’s surface, etc.
Outside of the knots, there can potentially be interference
regions with the same gray value as the knot. To actualize
the high-precision position of FCF CL knots, it is important
to cope with the aforesaid interference, eliminate outliers,
and connect the small outlier areas inside the knot. Conse-
quently, one of the fundamental and crucial procedures in the
processing steps is to read out the gray value of the entire
lumber.

The pixel weight calculation on the graph variable
edge.—The Gaussian filter function based on spatial dis-
tribution ensures the preservation of pixel values near the
edge, and excludes pixels far away from the edge without
affecting the pixel values on the edge (Lukacevic et al.
2019). By using the spatial filter and distance filter in con-
junction with nonlinear fitting to sharpen the image while
preserving the characteristics of the knots on the timber
surface, the cavity problem in the grayscale image was
resolved.
We identified any erratic and unpredictable changes in

brightness or color that may be present in the image as
graphical noise. The sawn timber knots exhibit nonuniform
grey tones and, in certain instances, also exhibit uneven
fluctuations in brightness or color. The two aforementioned
factors may result in a cavity, which we refer to as a cavity

Figure 6.—Coordinates for the distribution of lumber.

Figure 5.—Image acquisition system.

Figure 7.—A knot preliminary searching and location of gray
matrix on surfaces of lumber.
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problem, where the middle pixel point of the knots is lower
than the surrounding pixel points.

BF Ið Þp ¼ 1

Wp

X
q2SGrS

||p� q||ð ÞGrr
jIp � IqjÞIq
�

(1)

where BF(I) describes the bilateral filters, I is the input image,
Ip and Iq respectively denote the image value at pixel positions
p and q, S represents the spatial domain, and Gr describes the
two-dimensional Gaussian kernel (Tang et al 2018).
The normalization constant Wp is defined as follows:

Wp ¼ w i; j; k; lð Þ ¼ ws i; j; k; lð Þ3 wr i; j; k; lð Þ (2)
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2r2
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2r2

r
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 !

(3)

where w(i,j,k,l) describes spatial domain kernel template
weight, ws(i,j,k,l) describes value domain kernel template
weight, wr(i,j,k,l) describes bilateral filter template weight,
(i,j) describes the position of the relevant pixel around the
target pixel, f(i,j) represents pixel value, (k,l) represents the
position of the target pixel, f (k,l) represents the pixel value
of the target pixel, rs is distance standard deviation of
Gaussian function, and rr is the gray standard deviation of
Gaussian function (Yang et al 2018, Gao et al 2019).
The objective of the algorithm’s detection is to remove

several cavity areas that are far from the knots in order to
identify mismatches that happen outside of the lumber
knots and prevent the loss of edge information (Fig. 8a).
The spatial domain weight is significant in the region
where the lumber image’s gray value is flat, the point
where pixel change is minor, and the corresponding pixel
range is close to 1. Currently, it is possible to process
certain unnecessary gray change values outside of the
knot to prevent areas without knots from being mistak-
enly identified. In the edge area of the knots, the differ-
ence in gray between the pixels is large, the pixel range

domain weight is large, the spatial domain weight is
small, and the edge information can be obtained. The
processing effect diagram is shown in Figure 8b.

Spread the connected domain within the knot.—By
analyzing a knot’s pixel value, we were able to determine that
certain localizations in the interior region of the knot had
higher pixel values than others. These points can be attributed
to the inherent qualities of wood. The situation mentioned
above will affect the precise detection of the knots on the sur-
face of FCF. Based on the area-filling principle, the connected
domain with the internal interference areas within the knots is
treated by using the spreading domain method.

Based on the area-filling method, starting from one pixel
P (x, y), P (x, y) spreads in eight surrounding vector direc-
tions (Table 2) to achieve the denoising effect (Yu et al.
2020). The spreading logic is this: if there is no filling, fill it
(Singh et al. 2020); if it is filled, continue to search for the
neighboring pixels in each of the eight vector directions
with these eight pixels (Fig. 9) until the enclosed area is
completely spread or spread to the predetermined boundary

Figure 8.—The pixel weight calculation on the graph variable edge (a) knot searching of Fujian Chinese fir constructional lumber
before external cavity removal (b) localization after external cavity removal.

Figure 9.—Eight-neighborhood point search.
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of the knot. This operation provides important help for con-
tour extraction and region separation.
The calculation method of the boundary point vector is as

follows:
The color and texture characteristics of FCF CL are not uni-

form. In the detection process, there are often some adjacent
closed areas in a knot, which will affect the localization and
detection of the knot (Fig. 10a). Applying eight-neighbor
spreading the connected domain method to fill adjacent pixels,
which can spread from a closed area in a knot to other areas,
mark or separate a part of the image of a lumber for processing
and analysis. Check whether the current pixel has the original
color of the region (Li et al. 2021, Shuaeb et al. 2021). If the
answer is yes, fill the pixel in the recursive call, and use each
adjacent pixel as a new seed; if the answer is no, the current
pixel is returned to the caller. In this paper, the spreading the
connected domain algorithm is used to extract the central part
of the knot, starting from a point (initial point), and traversing
nearby pixels. Using this method, the protruding area sur-
rounded by the edge of the knots can be found in the pith of
lumber, and the interconnected area surrounded by the knots
can be found initially (Fig. 10b). The algorithm successfully
solves the problem of individual knots being separated or nar-
rowed, and the calculation is simple and fast.

External expansion and internal contraction.—Through
the external expansion and internal contraction operations,
the basic features of the lumber can be further extracted,
and then a higher-level algorithm can be used to identify
the knots. The algorithm filter is defined by a planar or non-
planar structural element, which is usually moved by pixel
on the image and is comparatively processed in the corre-
sponding mask. The knot of lumber is expanded externally
and then contracted internally. The image of knots main-
tains the original shape and changes the geometry evenly.
In the process of internal contraction, the specified edge
point of the internal contraction direction is used as the con-
traction point (Damme et al. 2021).
Use vector addition to merge two sets, such as (a,b) þ

(c,d) ¼ (a þ c, b þ d). External expansion X&oplus;B is the
set of all vector sums. The two operands of vector addition
come from X and B respectively, and obtain any possible
combination (Zhang et al. 2020). Let X and B be the set of
two-dimensional integer space P, X is defined by B extension
as:

X � B ¼ p 2 e2; p ¼ xþ b; x 2 X ; b 2 B
� �

(4)

X is expanded by B is the set of all expanded areas,
where B is often called a relative structural element, and the
input image is translated by all points of the structural ele-
ment, and then the union is calculated to obtain the result.
The filled area is the result of external expansion, and the
filled area includes all the ranges of X. This operation can
merge the points around the image into the object, or con-
nect two similar areas in a knot area. Therefore, it is very
useful to fill in the cavities in the image, and at the same
time, the operation has a filtering effect on the outside of
the image of knots (Ma et al. 2020, Valle et al. 2020).
X is defined by B internal contraction as:

XHB ¼ p 2 e2; p þ b 2 X ; 8b 2 B
� �

(5)

Internal contraction of X using B is a set translation of all
points in B that are contained in X. The filling area is the result
of indentation, and the filling area contains all ranges of X.
This operation is a contraction process to shrink the target set,
so it can eliminate useless points or small area components in
the image, and it can also separate two small connected
knots, which has a filtering effect on the image.

Let
[
B be the symmetrical set of B about the reference

point, which also becomes the transpose. According to the
Equation 6, the expansion operation can be used to realize
the contraction operation.

XHBð ÞC ¼ XC �B
[

(6)

Expanded in eight directions, the image of knots can
maintain the original shape. However, when expanding in a
single direction, some expansion points are not within the
range of the vector table, so there will be a problem that the
points that should be expanded cannot be expanded.
There are several ways to solve this problem (the eight

directions of the boundary vector are shown in Table 2).
(1) When the vector from this point to the next boundary

point is 1, and the expansion direction is 3, if the upper adjacent
point (908 direction) or the right adjacent point (08 direction) of

Figure 10.—Spread the connected domain within the knot (a) knot localization of Fujian Chinese fir constructional lumber before
inner cavity removal (b) knot localization after inner cavity removal.
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this point is “1,” extend the points with 1. (2) When the vector
from this point to the next boundary point is 3, and the expan-
sion direction is l, and when the lower adjacent point of the left
adjacent point of this point is 1, then 1 or the left adjacent point
of this point should be expanded. (3) When the vector from this
point to the next boundary point is 5 and the expansion direc-
tion is 1, if the adjacent point or lower adjacent point of this
point is 1, the left or lower adjacent point of 1 is expanded. (4)
When the vector from this point to the two boundary points is
7, and the expansion direction is 1, if the adjacent point or
lower adjacent point of this point is 1, the right or lower adja-
cent point of 1 should be expanded. In the process of internal
contraction, the key question is how to choose edge points. If
there are more than two boundary points on a straight line, and
the vector and the internal contraction direction are the same,
only the two end points on the straight line can be contracted
on the edge points in the internal contraction direction.
In the process of the contours fitting of knots of CL, if

there is a strong light and dark change in the image of knot,
that is, there are large changes in the adjacent contours, the
knot contours of the point can be extracted. When this algo-
rithm is not applied, the edge error recognition effect is
obvious (Fig. 11a). By selecting appropriate structural ele-
ments to carry out outward expansion and inward contrac-
tion operations on knots of lumber, it can bridge the narrow
discontinuities and slender gullies in knot positioning, elim-
inate small cavities, fill the fracture of contour line, and sep-
arate two (or more) small connected knots (Fig. 11b).

Measurement of knot areas on structural lumber sur-
faces.—On the surface of FCF lumber, the gray matrix of the
knot area and the nonknot area has a large difference, the knot

has obvious edges, and there are usually multiple gradients
on the edge of the knot. If the gradient value appearing at
a certain point is large, it means that the light and dark
changes of the image at that point are relatively large, and
the morphological edge detection would consider that
there is an edge.

The effect picture after use by a canny operator for edge
detection can be seen in Figure 12: the processed picture
removes the background and foreground from the image,
leaving only the edge contour of the background and fore-
ground; the method is able to extract the outer contour of
the whole sawn timber as well as the edge of the knot in a
clear and complete manner, and is able to meet the expected
requirements of the test. The system is able to identify and
completely label the sawn timber with a rectangular box to
completely differentiate it from the background, and at the
same time use an ellipse plus a rectangular box to mark the
identified surface defects of the sawn timber.

In this study, machine-vision and image processing meth-
ods were used to eliminate the influence of anisotropy of
lumber and knot on the knot size measurement, and to com-
pare the surface defect contour changes of lumber. The opti-
cal effect is used to scan the gray value changes of the image
of lumber to estimate the knot area and fit the knot contour.
Finally, the minimum enclosure rectangle fitting the algo-
rithm is used to determine the size of the knot.

Any point was set on the edge-fitting closed curve C as
P(xi, yi), and the minimum and maximum horizontal and
longitudinal coordinate values on the closed curve were cal-
culated to be xmin, xmax, ymin, and ymax, as shown in Equa-
tions 7 through Equations 10:

Figure 12.—Knot edge detection and fractal technique.

Figure 11.—Spread of the connected domain within the knot. (a) Knots localization of lumber before inner cavity removal. (b) Knot
localization after inner cavity removal.
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xmin ¼ min xið Þ (7)

xmax ¼ max xið Þ (8)

ymin ¼ min yið Þ (9)

ymax ¼ max yið Þ (10)

The four-point coordinates P1(xmin, ymin), P2(xmin, ymax),
P3(xmax, ymin), P4(xmax, ymax) of the minimum enclosure
rectangle of the closed contour were calculated. Finally, the
length (L) and width (W) of the knot were calculated, as
shown in Figure 13.

L ¼ jxmax � xminj (11)

W ¼ jymax � yminj (12)

In the gradient change of the gray value contour line, if
there is a trough (groove; Fig. 10b), the knot near the area was
searched as shown in Figure 10c. The contour-fitting extrac-
tion algorithm connected the points with the same gray matrix
value of the lumber to form a ring line and directly project to
the plane to form a horizontal ascent contour line
(Fig.10d), and the ring lines of different heights would not
coincide, which achieved the purpose of extracting the
contour of the knot. According to the type and characteris-
tics (color, lighting, etc.) of lumber, the knot gray value
contour algorithm was used to draw the contour-fitting
graph, so as to measure different types of size (Fig. 14).

Figure 14.—Size measurement of knot areas on the surfaces of Fujian Chinese fir constructional lumber: (a) contour three-
dimensional (3D) mapping curve, (b) projection of 3D mapping curve, (c) contour sectional graph, and (d) edge contour fitting
and oval knot size graph.

Figure 13.—Calculation of the knot size based on the minimum
enclosure rectangle method.
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Searching and localization knots areas on FCF CL
surfaces.—There is a binary function z ¼ f(x) for the gray
scale of lumber, which considers the rate of change of the
function in any direction at a certain point. Consider ray
l emitted from the point P(x, y). The ray refers to a directional
half-line. Take a point P0(x þ Dx, y þ Dy) near the point
P(x, y) in the l direction, denoted as |PP’| ¼ q. That is

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dxð Þ2 þ Dyð Þ2

q
. The directional derivative of the func-

tion point P along the direction l (the limit value exists) is:

of
ol

¼ lim
q!0

f xþ Dx; yþ Dyð Þ � ðx; yÞ
q

(13)

The directional derivative is the rate of change of the
function z along the half-line.
In the FCF CL, the gray matrix of the knot area and the

nonknot area has a large change, the knot has obvious edges,
and there are usually multiple gradients on the edge of the
knot. If the gradient value appearing at a certain point is large,
it means that the light and dark changes of the image at that
point are relatively large, and the morphological edge detec-
tion will consider that there is an edge.
The known directional derivative formula follows:

of
ol

¼ of
ox

cosaþ of
oy

cosb ¼ G
!� 1

!0

¼ jG!jcosðG!; 1
!0

Þ
(14)

When 1
!0

and G
!

have the same direction, the direction

derivative takes the maximum value max(of/o) ¼ jG!j.
This study is realized by comparing the changes in the

contours of the surface defects of the lumber. Combined
with the characteristics of FCF, the gray value change of
image of lumber is scanned, and the knot edge contour is
fitted and extracted to position knot area of lumber. The
pith of the lumber knots of FCF CL is often darker, and
the color depth is gradually reduced in the form of the pith
gradually radiating outward, showing a trend of gradient
change of the gray value contour. The contour-fitting
extraction algorithm connects the points with the same
gray matrix value of the FCF CL to form a ring line and
directly project to the plane to form a horizontal ascent
contour line (Fig. 15a), and the ring lines of different
heights will not coincide. In the gradient change of the
gray value contour line, if there is a trough (groove; Fig.
15b), search and locate the knot near the area, as shown in
Figure 15.

Figure 15.—Research and localization of knots area on structural lumber surfaces: (a) projection of three-dimensional (3D) map-
ping curve, (b) contour 3D mapping curve, and (c) contour sectional graph of knot.
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Based on the introduction in the previous “Methods” sections,
the knot searching and localization steps for lumber are as fol-
lows: through the lumber and background segmentation, deter-
mine the coordinate origin of the overall surface of the lumber,
and establish the coordinate system of the surface of lumber.
The characteristic information of the image is preserved in the
spatial domain. With recursive search as the core, the designated
color in the Unicom area is replaced from the designated posi-
tion to eliminate the small outlier area. The target point is
merged into the lumber background and expanded to the out-
side, and the regions with large differences in gray value
inside the target knot can be merged, which is convenient for
extracting the whole knot. Eliminate the connected boundary
of adjacent nodes, contract the boundary inward, separate the
knots of different objects that are stuck together, and remove
small particle noise. According to the type and characteristics
(color, lighting, etc.) of FCF CL, use the knot gray value con-
tour algorithm to draw the contour fitting graph, so as to
search and locate the knot (Fig. 15c).

FCF three-point bending test.—The specimen is sub-
jected to a three-points bending test with a Instron 3369
microcomputer electronic universal mechanical testing
machine. The test loading procedures refer to the GB/T
50329-2012 standard for test methods of timber structures
and GB/T 1936.1-2009 test methods for bending strength of
timber. The tested specimens span-to-depth ratio is (17:280) ¼
16.5, the thickness of the specimens is 17 mm, and 38mm is
the loading surface of the indenter. According to the standard

GB/T 1936.1-2009, the effect of component of shear deflec-
tion is ignored. The main contents measured in the test include
midspan deflection value and breaking load of the specimen.
The whole loading process is controlled by displacement, and
the three-point bending test is carried out at a constant loading
speed of 5 mm/min, and applying pressure on the narrow side
and continuing loading until the specimen is damaged. The
duration is 2 to 3 minutes.
According to the standard GB/T 1936.2-2009, method for

determination of the modulus of elasticity in static bending
of wood, multiple applications and load releases are made
to stabilize the deflection measurement to obtain true deflec-
tion. Generally, we do not consider the deflection of the ini-
tial compressive test. After adjusting the test several times
according to the steps introduced in the standard, the real
value of specimen deformation between the upper and
lower loads is obtained from the subsequent test results for
modulus of elasticity (MOE) calculation.
In the three-point bending test, during the vertical compres-

sion of the load head in the specimen, the lower and upper
limit load for measuring the specimen deformation is generally
300 to 700 N. The testing machine first loads the lower limit
load at a uniform speed, and immediately records the dial indi-
cator value, accurate to 0.005 mm. Data is recorded in the
table, and then the machine loads to the upper limit load after
15 to 20 seconds, then unloads; this is repeated three times,
and each time the unloading should be slightly lower than the
lower limit load, and then the load lowers to the lower limit
load, and finally the deflection change is determined as
the true value of the sample deformation between the
upper and lower limit loads. We do not consider the ini-
tial deflection, and finally obtain the real deformation
value of the sample between the upper and lower loads
after the above test for MOE calculation.
According to GB/T 26899-2011 for structural laminates

and GB/T 50708-2012 for structural design specifications
for glulam wood, the laminates are composed of preforms.
Pubon glue is used as the adhesive. The moisture content of
the laminates is between 8 and 15 percent, and the pressure
applied during the lamination is controlled between 0.6 and
1.0 MPa. The three-point bending test was carried out by
using a YAW-1000Fweiji control electro-hydraulic servo
wood bending strength testing machine, which combines
electronic technology with mechanical transmission tech-
nology. The deflection and load signals were collected in
real time and displayed synchronously through the digital
display window on the software.

Figure 17.—Three-point bending test: (a) dimensions of the specimen, and (b) model of three-point bending test.

Figure 16.—Sawn timber mechanics testing machine structure
diagram.
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The specific acquisition curve process is as follows:
When the sample is tested, a weak signal is generated
after it is stressed with the force-measuring sensor,
which is amplified by the measuring system and con-
verted by an Analog/Digital converter, and sent to the
microcomputer for collection and processing, so as to
display the measured load value. Finally, Equations 3

and 4 are used to calculate MOE and modulus of rupture
(MOR).

1In the three-point bending test, the load was applied to
the wide surface of all sawn timber samples. After applying
the load, we show both the sawn timber changes on the
applied load surface and the sawn timber changes on the
narrow side in Figures 16 and 17.

Figure 18.—Researching and localization of knot areas on structural lumber surfaces: (a) Fujian Chinese fir constructional lumber,
(b) contour three-dimensional (3D) mapping curve, (c) projection of 3D mapping curve, and (d) contour sectional graph of knot.
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According to the data measured in the experiment, the
corresponding MOE and bending strength is calculated by
using Equations 3 and 4, and the difference of the results is
analyzed.

MOE ¼ DPL3= 4bh3Dy
� �

(15)

MOR ¼ 3PmaxL= 2bh2ð Þ (16)

where L is the span, b is the width of the specimen, h is the
height of the specimen, y is the stress-strain diagram value,
P is the load for which stress-strain diagram y is produced.
Pmax is the breaking load.

Results and Discussion

Evaluation of knots searching and localization

The algorithm can differentiate the knots from the timber
background, lower the FCF CL knot-edge detection error,
speed up image processing, resist the impact of the sur-
rounding environment to the captured object, and satisfy
high-speed and wide-area testing requirements. This study
finished the knot localization test on the lumber’s surface,
verified the precision of the detection model’s search and
localization, and evaluated the effects of knot on lumber in
more detail. In order to aid in the evaluation and grading of
the FCF CL, this research will propose an algorithm based
on the contour line localization of the gray value of lumber.
This method was used for online nondestructive lumber
knot detection. The researched knot gray contour change
rule also serves as a reference for the detection of other
kinds of defects through the use of this method. The knots
were searched based on the types and characteristics of FCF
CL knots, as well as the gray change curve and contour-
fitting diagram created by the gray value contour fitting and
extraction method. The calculation results of knot distribu-
tion are shown in Figure 18.
The knot localization detection method was used on a

1,000 by 346-mm piece of timber with five knots on its
surface, as depicted in Figure 12. Three section lines (x ¼
74.61 mm, x ¼ 185.7 mm, x ¼ 433.7 mm, y ¼ 50.3 mm,
y ¼ 101.9 mm, y ¼ 141.4 mm) were constructed in the trans-
verse and longitudinal directions, respectively, in the con-
tour-fitting diagram. There is a trough and a minimum value
for the horizontal section line y ¼ 50.3 mm (section line 1)
between x ¼ 70 to 80 mm and x ¼ 200 to 210 mm. To find
the position coordinates P2(x,y) and P4(x,y) of the knots on
the timber, the horizontal section line y ¼ 101.9 mm (sec-
tion line 3) has a trough within the range of x ¼ 420 to 435

mm and a minimum value. Search and locate the position
coordinate P5(x,y) of the knots on the lumber. The horizon-
tal section line y ¼ 141.4 mm (section line 2) has a trough
in the range of x ¼ 175 to 200 mm, and the minimum value
appears. Search and locate the position to obtain the posi-
tion coordinate P3(x,y) of the knot. The vertical section line
x ¼ 74.6 mm (section line 6) has a trough and a minimum
value in the range of x ¼ 40-60 mm and x ¼ 120-140 mm.
Search and locate the position coordinates P2(x,y) and
P3(x,y) of the knot. The vertical section line x ¼ 185.7 mm
(section line 4) has a trough within the range of x ¼ 135 to
150 mm and a minimum value. Search and locate the posi-
tion coordinate P3(x,y) of the knot. The vertical section
line x ¼ 433.7 mm (section line 5) has a trough within the
range of x ¼ 90 to 110 mm and a minimum value. Search
and locate the position coordinate P5(x,y) of the knot.
The obvious change of gray-scale value gradient was

found at the knot’s position, which can accurately locate the
knots. Through the steps (the pixel weight calculation on
the graph variable edge, spread of the connected domain
within the knot, external expansion and internal contrac-
tion), the lumber can be effectively analyzed, so as to lay a
good foundation for accurate positioning of knots. Accord-
ing to the obtained position information of the knots, the
knot distribution of the whole lumber can be further
counted, as shown in Table 3. The rBias measured at posi-
tion x of knots is within 0.61 percent, and the rRMSE(Rela-
tive Root Mean Square Error) is within 0.49 percent; the
rBias and rRMSE measured at position y of knots are within
0.84 and 0.35 percent (Table 4). The detection results of the
three kinds of knots are shown in the Table 5. Based on the
machine-vision detection method, the detection time of
each piece of sawn timber is 2.2 seconds. Compared with
the manual measurenment, the machine-vision detection
method for large-size lumber has a relatively high localiza-
tion detection precision and speed.

Statistics of knot areas

Test sample groups FJS1 through FJS8, with the size of
1,000 by 346 mm, were used to carry out the experiment of
searching and locating the knots, as shown in Table 3, and
make statistics on the number and positions of knots in

Table 3.—The boundary point vector.

Boundary point

vector

x coordinate

calculation

y coordinate

calculation

0 x ¼ x þ 1 invariant

1 x ¼ x þ 1 y ¼ y � 1

2 invariant y ¼ y � 1

3 x ¼ x � 1 y ¼ y � 1

4 x ¼ x � 1 invariant

5 x ¼ x � 1 y ¼ y þ 1

6 invariant y ¼ y þ 1

7 x ¼ x þ 1 y ¼ y þ 1

Table 4.—Evaluation of knot positioning accuracy of Fujian
Chinese fir constructional lumber.

Position

x

(mm)

rBias

(%)

rRMSE

(%)

Y

(mm)

rBias

(%)

rRMSE

(%)

P1 65.1 0.61 0.28 109.5 0.42 0.35

P2 70.3 0.42 0.21 44.8 0.67 0.21

P3 178.8 0.17 0.21 135.2 0.30 0.28

P4 193.1 0.16 0.21 45.2 0.84 0.28

P5 424.6 0.17 0.49 104.5 0.11 0.07

Table 5.—Detection results of different types of knot defects.

Detection type Detection rate

Dead knot 96.3%

Round knot 94.8%

Edge knot 95.9%

FORESTPRODUCTS JOURNAL Vol. 74, No. 2 197

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2024-12-21



lumber. This research method can quickly, simply, and
accurately locate and calculate the number and position of
knots on the surface of lumber, instead of relying on manual
measurement to obtain the information needed for process-
ing and production. Through the observation and applica-
tion in the production experiment, the growth defects of
FCF are mainly knots, which not only affect the wood qual-
ity, but also decrease value and reduce the strength or dura-
bility of lumber. Knots are located in different positions
of lumber, and their influence on the structural properties of
dimension is also different from the application mode of
building materials. Therefore, after searching and locating
the knots, it is of great significance to know size and loca-
tion of knots. The detection experiment of this sample
group shows that, as shown in Table 6, the average number
of knots in FJS1 through FJS8, includes two end knots, two
knots on the side (0 to 1/4 width and 3/4 width from the ori-
gin) and four knots at the center (1/4 to 3/4 width from the
origin). The test results of this sample group show that, as
shown in Table 7, the proportion of knots at the center (1/4
to 3/4 width from the origin) is relatively high, accounting
for 53.33 percent, the proportion of knots on the side (0 to
1/4 width and 3/4 width from the origin) is the second,
accounting for 26.67 percent, and the proportion of knots
at the center (1/4 to 3/4 width from the origin) is 20.00
percent. The above detection and statistical data show that
this method can accurately search and locate knots, which
can not only be used as an important basis for the quality
evaluation of FCF CL in the later stage. It is also an impor-
tant step in the production and processing of lumber,
breaking the traditional thinking and processing mode of
manual visual marking of FCF, and making up for the
shortcomings of traditional methods and promoting the
safe and stable green application and development of
building materials.

Effect of knots on bending resistance of FCF CL

From the appearance, there are many knots in FCF, and
most of them are slipknots, with fewer dead knots. The
MOE values of six groups of FCF with different knots are
6.11, 6.09, 6.29, 6.39, 6.92, and 6.17 Gpa. The bending
strengths of six groups of FCF with different knots are
84.12, 111.99, 107.68, 105.62, 99.69, and 92.07 MPa, and
the coefficients of variation are 23, 22, 21, 13, and 21 per-
cent, which are all higher than 15 percent coefficient of var-
iation of bending strength stipulated in the code, as shown
in Table 8. The results show that the bending strength of the
lumber is good, and there is a correlation between knots and
the bending strength of lumber with knots.

It can be seen from Figure 19 that when FCL with knots
was pressed from the narrow side, the specimen failure
occurred at the knots, and the specimen exhibited stratifica-
tion and fracture. After the pressure was removed, the speci-
men showed obvious deformation. Different knot positions
will cause different stress distributions, which will change
the elastic modulus and bending strength of lumber. When
the knot appears on the edge of the FCF CL, it first breaks
in the mechanical testing machine, as shown in Figure 20.

In terms of the failure forms of specimens, the failure of
FCF was accompanied by slippage and stratification in
addition to the fracture of wood fiber. The shape variable of
FCF was more obvious after the pressure was removed,
especially at knots on the side. The effects of knots of the
whole lumber on the strength reducing characteristic were
studied to verify that they reduce its load bearing capacity.
The study on the effects of knots on the strength-reducing
characteristics of FCF CL has verified that knots will reduce
its load-bearing capacity.

Based on the developed algorithm, the knots of FCF CL
were located, and the weak parts of lumber were searched
and determined. Through mechanical bending resistance
test, MOE and MOR were determined to study the influence

Table 7.—Position and quantity statistics of knots of Fujian Chinese Fir construction lumber.

Samples

Sum of

knots

End knots

(pcs.)

Knots on the side 0–1/4 width and 3/

width from the origin (pieces)

Knots at the center 1–3/4

width from the origin (pieces)

FJS1 7 3 1 3

FJS2 5 1 1 3

FJS3 9 2 1 6

FJS4 12 2 6 4

FJS5 5 2 0 3

FJS6 8 2 1 5

FJS7 8 0 3 5

FJS8 6 0 3 3

sum 60 12 16 32

average 7.5 1.5 2 4

Table 6.—Comparison of defect detection accuracy of different methods.a

Method Machine-vision detection method Manual measurement

rBias measured at position x 0.61% Subjective judgment, did not complete the exact

location informationrRMSE measured at position x 0.49%

rBias measured at position y 0.84%

rBias measured at position y 0.35%

Measurement time (s) 2.2 s 600 s

a The actual data of the lumber measured using a steel tape (accuracy of 1 mm), triangle ruler (accuracy of 1 mm) and a vernier caliper (accuracy of 0.01 mm)

was taken as the reference standard value.
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of knots on mechanical properties of FCF CL. As shown in
Table 9, knots will reduce the mechanical properties of FCF
CL. The MOE average decline rate of knotted FCF is 2.40
percent. The bending strength of FCF with knots is good,
and there is a significant correlation between knots and the
bending strength of CL with knots. The MOR average
decline rate of knotted FCF is 29.17 percent. Knots will
reduce the bending strength of lumber, especially knots at
the edge (FJ-S-G). In the area with knots, the average MOE
and MOR of CL are 6.33 GPA and 100.20 MPa respec-
tively. The above research shows that the mechanical prop-
erties of FCF CL are gradually reduced by the knots. Knots
are the main defect characteristic of FCF CL. Knots are an
important factor affecting MOE and MOR of lumber. They
lay a foundation for the study of various defects affecting
strength or related properties on the surface of lumber.

Conclusions
Defect searching and FCF CL localization are the pri-

mary focus of this work. Combining image processing with
the surface characteristics of FCF CL, a practical and effec-
tive approach for locating knots in FCF CL was presented.
The approach satisfies the requirements of large-area lum-
ber testing while mitigating the impact of the environment
on the captured object. We analyzed and processed the gray
value of the knot region and non-knot area of CL using FCF
anisotropy and knot gray features. The knots’ contour mis-
fitting issues were resolved, and loss of edge information
successfully prevented. By extracting knot characteristics,
position detection accuracy was improved. A wave trough
emerged in the profile line during the gradient shift of the

gray value contour line, fitting the knots’ outlines. This
algorithm is used to obtain the knots’ positions and subse-
quently count the knot distribution across the lumber. This
kind of nondestructive testing is used to examine the
mechanical properties of FCF CL. By using contour-fitting
and extraction algorithms to locate knots, grading can be
made more accurate and efficient, increasing the amount of
wood utilized and its application to real production.

Future Research Possibilities
In future research work, the technology of machine-

vision technology can be combined with other sawn timber
identification technologies, such as ultrasonic detection, X-
ray detection technology, or infrared thermal image detec-
tion, to determine whether there are defects inside the
wood, to detect and locate the defects of sawn timber, and
to improve the accuracy of the prediction of sawn timber
mechanical properties.
There are various options for sawn timber machine-

vision surface defect recognition technology such as
manual visual inspection, machine-vision technology,
and deep learning technology. Each technology has its
advantages and limitations, and users can choose the
appropriate technology according to their own needs and
conditions. In the future, with the continuous develop-
ment of science and technology, these technologies may
be further improved and perfected, bringing more possi-
bilities for sawn timber inspection.
With increasing environmental awareness and the promo-

tion of green building, more and more buildings are using
timber as the main building material. This not only raises

Figure 19.—Cracks in the final failure of Fujian Chinese fir (with knots): (a) test sample of FCF:FJ-S-G13, (b) test sample of FCF:
FJ-S-G15, and (c) test sample of FCF:FJ-S-G16.

Table 8.—The proportion statistics of the position and number of knots of Fujian Chinese Fir constructional lumber.

Samples

End knots

proportion (%)

Knot proportion on the side 0–1/4

width and 3/4 width from the origin (%)

Knot proportion at the center 1–3/4

width from the origin (%)

FJS1 42.86 14.29 42.86

FJS2 20.00 20.00 60.00

FJS3 22.22 11.11 66.67

FJS4 16.67 50.00 33.33

FJS5 40.00 0.00 60.00

FJS6 25.00 12.50 62.50

FJS7 0.00 37.50 62.50

FJS8 0.00 50.00 50.00

Average 20.00 26.67 53.33
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the demand for timber, but also puts higher requirements on
the quality of timber. Therefore, how to improve the quality
of sawn timber so that it can better meet the needs of build-
ing materials, furniture production and other needs will be
an important direction for the future work of sawn timber
grading and so on.
With the development of big data and cloud computing

technologies, in particular the advancement of artificial intel-
ligence and machine-vision technologies, sawn timber
preference technologies are expected to be further opti-
mized to achieve higher precision and automated timber
selection and classification. For example, sawn timber can be
scanned and analyzed quickly and accurately by machine-
vision technology, and then algorithms can be used to accu-
rately assess the quality, dimensions, and other information
of the sawn timber to achieve automatic grading of the sawn
timber.
Wood can also be used in shipbuilding, aerospace, and

other fields, with the advantages of light weight, fire preven-
tion, environmental protection, and so on. With the devel-
opment of science and technology, people are constantly

innovating and expanding the way they utilize wood. The
technology of grading sawn timber is expected to become
more precise, fast, and automated, as well as to better meet
the application of timber materials in different fields, in
order to adapt to the trend of sustainable development in the
future.
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