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Abstract
The chemical composition of wood determines the color development when applying chemical stains to the surface of

wood. However, different species and individuals from the same species can show variations in the chemical composition,
resulting in the risk of nonuniform color development in industrial staining processes between different batches of wood. In
the present study, near-infrared (NIR) models were developed to predict wood specimen color development after applying
three different concentrations of the chemical stains iron acetate and sodium bicarbonate. The modeling dataset included the
NIR spectra of the untreated wood, stain treatment, concentration, and the International Commission on Illumination (CIE)
L*a*b* color value before stain application for 210 specimens from five commercial wood species, including red oak
(Quercus rubra), white oak (Quercus alba), yellow poplar (Liriodendron tulipifera), southern yellow pine (Pinus spp.), and
western red cedar (Thuja plicata). The models were developed by partial least squares regression (PLSR), using 13 different
mathematical transformations on the NIR spectra as well as the raw spectral data. Models with single stains and global-
species/stain models were developed and compared. The models for iron acetate showed promising results in predicting the
color development with the coefficient of determination for cross-validation (R2

cv � 0.92), while the models for sodium
bicarbonate showed acceptable results with R2

cv of 0.71 to 0.89. However, a global model including both stains resulted in an
unsatisfying prediction of the CIE L*a*b* color values, with R2

cv of 0.46 to 0.76. The NIR models can be useful for online
predictions of color development in industrial staining processes of wood with chemical stains.

Chemical stains for wood react with polyphenolic
constituents of the wood extractives, especially with
tannins, resulting in a spectrum of colors from shades of
gray and brown to red-brown (Flexner 2021). The
concentration and composition of these wood extractives
can vary between species, between individuals of the same
species, and even across the cross-section of a log in a single
tree (Yanchuk et al. 1988), with the consequence that the
color development due to chemical stains is difficult to
control. Hence, about a century ago, chemical stains were
mainly replaced by synthetic aniline dyes and pigmented
stains, which have the advantage of a greater range of
colors, better resistance to fading, and ease of use (Flexner
2021). In more recent years, however, chemical stains,
especially those that contain iron ions such as ferrous iron
sulfate and iron acetate, have experienced increasing
attention, as they can develop colors that imitate a natural
weathered look on wood surfaces (Dagher et al. 2020,
Hundhausen et al. 2020). Likewise, sodium bicarbonate has

been found to develop aged brownish colors on wood
(Kropat et al. 2020).

Since the wood extractives are not distributed evenly
across the cell walls, chemical stains develop a spectrum of
different color shades across the stained surface. In contrast,
pigmented stains and synthetic aniline dyes can partially
cover the wood texture and create uniform colors across the
stained surface, producing an artificial appearance (Dagher

The authors are, respectively, Ph.D. Researcher and Assistant
Professor, Dept. of Forest Biomaterials, North Carolina State Univ.,
Raleigh, North Carolina (kropat.marcel@gmail.com [corresponding
author] and pflaleic@ncsu.edu); and Research Assistant, Camcore,
Dept. of Forestry & Environmental Resources, North Carolina State
Univ., Raleigh, North Carolina (jjacosta@ncsu.edu). This paper was
received for publication in March 2022. Article No. 22-00021.
�Forest Products Society 2022.

Forest Prod. J. 72(2):130–139.
doi:10.13073/FPJ-D-22-00021

130 KROPAT ET AL.

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2024-12-26



et al. 2020). Tannic acid solution can be applied as a
pretreatment to wood species with low extractive concen-
trations to intensify the color development due to chemical
stains containing iron ions (Kielmann et al. 2018). However,
a uniform color development similar to pigmented dyes and
synthetic aniline dyes must be expected due to the even
distribution of the tannic acid across the surface. In addition
to the benefits of creating a weathered appearance, iron
acetate and sodium bicarbonate constitute environmentally
friendly and nontoxic alternatives to conventional stains
(Dagher et al. 2020).

To control the color development of chemical stains on
wood, the chemical composition of the wood itself must be
considered. NIR spectroscopy is a nondestructive method
for rapid, indirect assessment of chemical properties for
various materials, including organic matter such as wood,
soil, and food products, and has been increasingly utilized in
the forest and forest products industry (So et al. 2004). NIR
spectroscopy has been used to assess the chemical properties
of wood, including lignin content, cellulose content, and
pulp yield (Garbutt 1989, Wright et al. 1990, Michell 1995,
Raymond and Schimleck 2002, Hodge et al. 2018), for
differentiation between wood species (Pastore et al. 2011),
for differentiation between sap and heartwood (Haartveit
and Flæte 2008, Sandberg and Sterley 2009), and the
prediction of physical properties such as grain angle (Gindl
and Teischinger 2002) and density distribution (Schimleck
2003, Via et al. 2005).

Depending on the NIR spectrometer, spectral data can be
obtained from ground material or directly from the
material’s surface. Though grinding the material can result
in better prediction diagnostics, it is a destructive process
that requires additional preparation time. On the other hand,
a direct measurement of the material’s surface is fast,
nondestructive, and thus preferable for inline measurements
in industrial processes. However, the measurement of solid
wood can result in different spectral patterns depending on
tangential, radial, or cross-section surfaces (Gindl and
Teischinger 2002). Hence, the anatomical direction of the
measured specimen face must be considered in experiments.

Whittier et al. (2021) compared the performance of
models predicting foliar nutrient levels in teak seedlings
with NIR data gathered by destructive and nondestructive
sampling. Measurements for destructive sampling were
obtained by a benchtop device, while a handheld device was
used to obtain measurements for nondestructive sampling.
The results suggested that both destructive and nondestruc-
tive sampling resulted in useful models for predicting foliar
nutrient levels. Likewise, Acosta et al. (2020) compared the
predictive performance of models with NIR spectra
gathered by a benchtop NIR device to models with NIR
spectra collected by handheld devices to predict the nutritive
value of forage. The authors concluded that the predictive
performance of models developed with NIR spectra
obtained by handheld devices is comparable with models
developed with NIR spectra obtained by benchtop devices.

This research project aims at predicting the development
of the International Commission on Illumination (CIE)
L*a*b* color values on wood after applying the chemical
stains iron acetate and sodium bicarbonate. For that purpose,
partial least squares regression (PLSR) models were
developed with NIR spectral data of the untreated solid
wood as predictors. The overall goal was to assess a series
of models for the inline prediction of color in industrial

staining processes with chemical stains in order to generate
a more uniform color outcome.

Materials and Methods

Preparation of wood specimens

Specimens from the heartwood of red oak (RO) (Quercus
rubra), white oak (WO) (Quercus alba), yellow poplar (YP)
(Liriodendron tulipifera), southern yellow pine (SYP)
(Pinus spp.), and western red cedar (WRC) (Thuja plicata)
were used in the study. The wood was purchased kiln dried
from Capitol City Lumber, Raleigh, North Carolina, and
conditioned in standard atmosphere (208C, 65% relative
humidity) according to ASTM 1037-12 (ASTM 2020a) until
reaching the equilibrium moisture content of approximately
12 percent. The moisture content was determined according
to ASTM D4442-20 (ASTM 2020b), Method A (primary
ovendrying method). The wood species’ ovendry density
was calculated according to ASTM D2395-17 (ASTM
2017), Test Method A (volume by measurement). In total,
210 specimens (42/species) with dimensions of 150 3 70 3
5 mm (longitudinal 3 radial 3 tangential) were prepared by
sawing, planing, and sanding up to grit 180 with steps 80,
100, 120, 150, 180 grit. Care was taken that the stained and
measured surfaces were clear and showed a radial cut
direction with annual rings oriented perpendicular to the
stained surface.

Measurement of pH value

The pH values for the wood species were measured
according to the method introduced by Campbell and Bryant
(1941). Three randomly selected specimens of each species
were ground in a mill with rotating knives (Wiley, Model 4)
using a screen width of 2 mm. One gram of ground wood
was dispersed in 20 mL deionized water and stored in closed
glass vials at 218C. After 24 hours, pH values were obtained
in the dispersion with a general-purpose electrode (REED,
PE-03). All measurements were performed in triplicate.

Chemicals for stains and analytical techniques

Iron powder (97%), tannic acid powder (ACS reagent),
glacial acetic acid (17.4 M), sodium bicarbonate powder
(�99.7%), and sodium hydroxide pellets (�97%) were
purchased from MilliporeSigma (St. Louis, Missouri, USA).
1,10-phenanthroline (�99%), hydrochloric acid (12.178 M),
sulfuric acid (1.005 to 0.995 N), and ferrous ammonium
sulfate hexahydrate (�98.5%) were purchased from Fisher
Scientific (Waltham, Massachusetts, USA). Hydroxylamine
HCL (�99%) was purchased from Arcos Organics (Morris
Plains, New Jersey, USA).

Stain preparation

The iron acetate stain was produced by reacting 17.5 g of
iron powder with 200 mL of 25 percent acetic acid. The
acetic acid was heated on a magnetic hotplate stirrer to
808C. The solution was stirred for 6 hours and eventually
filtered with a Buchner funnel under vacuum using a filter
paper disc with a porosity of 3 microns. The iron acetate
solution was stored in a cool and dark place. The iron
concentration of the solution was determined spectrophoto-
metrically with 1,10-phenanthroline (Harvey et al. 1955)
using a ultraviolet–visible spectrophotometer (Perkin Elmer,
Lambda XLS). Directly before the application to the wood
specimen, the stain was diluted to target concentrations
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(0.05, 0.1, 0.2 g/liter) using deionized water. Sodium
bicarbonate, 0.84, 4.2, and 8.4 g, was dissolved by stirring
in 100 mL of deionized water to result in the target
concentrations 0.1, 0.5, and 1 M. The solutions were filtered
with a Buchner funnel and stored cool and dark until
application. Tannic acid powder in measures of 0.03 and
0.06 g were dissolved by stirring in 100 mL deionized water
to result in target concentrations 300 and 600 mg/liter. The
solutions were filtered with a Buchner funnel and stored
cool and dark until application.

Application of staining solutions

Staining solutions were sprayed onto the specimen using
a handheld gravity feed high volume low pressure (HVLP)
spray gun (Husky, No. H4840GHVSG). The average
application rate was calculated from mass before and after
application and surface area of randomly selected speci-
mens. Tannic acid was applied in concentrations of 300 and
600 mg/liter as pretreatment to specimens of southern
yellow pine (SYP) and yellow poplar (YP), which are
naturally low in extractives/tannins. Application rates are
presented in Table 1. The specimens were stored dark in
standard atmosphere for 24 hours after stain application and
before color measurement.

Color measurement

Color values of all specimens were measured in the CIE
L*a*b* color space, using a spectrophotometer (Technidyne,
ColorTouch X) before and 24 hours after applying staining
solutions. Parameters for the color measurements were
illuminant D65, 108 Standard observer, wavelength range
360 to 780 nm, and a circular measurement area with a
diameter of 30 mm. The color of every specimen was
determined as an average from three measurements. The
color assessment was performed following ASTM D-2244
(ASTM 2021). Color difference (DE*) (CIE76) was calcu-
lated by Equation 1.

DE* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL*

2 � L*
1Þ

2 þ ða*
2 � a*

1Þ
2 þ ðb*

2 � b*
1Þ

2
q

ð1Þ

where L* is the lightness coordinate between black and
white, a* the coordinate between red and green, and b* the
coordinate between yellow and blue.

NIR measurement

NIR diffuse reflectance spectra in the range of 1600 to
2400 nm were obtained from the untreated wood specimen
with a handheld NIR spectrometer (Thermo Fisher, micro-
PHAZIR) at a resolution of 8.7 nm. The measurement area
of 1 cm2 was illuminated by a tungsten lamp oriented at 308

above the specimen. Each scan was conducted with nine
replicates. Every specimen was scanned three times, and an
average spectrum was calculated after removing outliers.

PCA cluster analysis

Principle component analysis (PCA) was conducted to
investigate clustering in the NIR data among the different
species. Classical PCA was calculated for centered and no-
scaled data using the R package ChemoSpec (Hanson 2021).

NIR model development

The models for predicting the CIE L*a*b* color values
were developed using a data analysis pipeline written in the
R environment (R Core Team 2016). The pipeline has been
successfully used for model development based on NIR
spectra, such as for the prediction of chemical properties of
wood (Hodge et al. 2018), the nutritive value of switchgrass
(Bekewe et al. 2020), a mixture of native warm-season
grasses (Castillo et al. 2020), and for prediction of forage
nutritive values (Acosta et al. 2020). The pipeline is
separated into two phases: (a) spectral transformation and
outlier detection, (b) model training, cross-validation, and
the prediction of a test dataset.

To summarize the NIR pipeline: first, different mathe-
matical transformations, including scatter corrections,
spectral derivatives, and combinations of the former (pairs
of transformation), were applied to the untreated spectra
(log R�1) to remove scattering associated with diffuse
reflection and improve the subsequent regression analysis.
Scatter correction transformations included multiplicative
scatter correction (MSC), standard normal variate (SNV),
and detrend (DT). Spectral derivative methods included
Savitzky-Golay transformation calculated with second-order
polynomial and second derivative at two different window
sizes of five and seven smoothing points (SG5 and SG7).
Pairs of transformations included SNVþDT, MSC þ DT,
SNVþ SG, MSCþ SG, and DTþ SG. Outliers in the NIR
data were determined and removed after the spectral
transformation by calculating local outlier factors (LOFs)
(Breunig et al. 2000) based on the spectra’s 20 nearest
neighbors. Spectra with LOF values greater than two were
excluded from the analysis (Acosta et al. 2020).

Second, for model screening, outlier-free full datasets for
all transformations and the untreated NIR spectra were used
to fit NIR models between the spectral data and the
categorical predictor’s stain type, concentration, and CIE
L*a*b* color values. Models were calculated with partial
least squares regression (PLSR) using the R package PLS
(Mevik and Wehrens 2016). For screening purposes, models
were calculated with different combinations of species,
stains, and concentrations, as well as global models
including all data. The model performance was evaluated
by tenfold cross-validation. The optimum number of latent
variables was selected using the ‘‘onesigma’’ approach
(Hastie et al. 2009), by which the model with the lowest
number of latent variables within one standard error of the
model with the absolute minimum root mean squared error
of prediction (RMSEP) is selected. Desirable models are
those with a small number of latent variables, maximizing
the coefficient of determination for cross-validation (R2

cv)
and minimizing the root mean squared error of prediction
for cross-validation (RMSEPcv). A specific two-step selec-
tion algorithm was applied to avoid subjectivity within the

Table 1.—Application rates for staining solutions.

Staining solution Concentration Application rate (g/m2)

Iron acetate 0.05 g/liter 66.89 6 5.10

Iron acetate 0.1 g/liter 61.54 6 5.63

Iron acetate 0.2 g/liter 63.20 6 5.15

Sodium bicarbonate 0.1 M 66.67 6 3.51

Sodium bicarbonate 0.5 M 63.02 6 6.50

Sodium bicarbonate 1 M 77.54 6 7.29

Tannic acid 300 mg/liter 84.61 6 2.74

Tannic acid 600 mg/liter 89.95 6 11.28
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selection process of the best models. First, models for
different variable combinations were selected for the single
CIE L*a*b* color values based on the smallest RMSEPcv

among the various transformations. Eventually, the models
were compared by the R2

cv. The number of latent variables
(factors) resulted from the ‘‘onesigma’’ selection process.

For evaluation of the model performance, the complete
outlier-free datasets were randomly divided into training
(75%) and test (25%) data sets. The training dataset was
used to develop the models that were determined to be
suitable during the screening process, while the test dataset
was used to evaluate the predictive performance of these
models. Scatterplots for the CIE L*a*b* color values with
actual values (x-axis) vs. predicted values (y-axis) were
plotted. In addition, the coefficient of determination (R2),
RMSEP, ratio of performance to deviation (RPD), which is
the standard deviation divided by the standard error of
prediction (Williams et al. 2017), and bias, which is the
average difference between predicted and actual value, were
calculated.

Results and Discussion

Color development after staining

Staining with iron acetate resulted in shades of brown and
gray to dark purple, while staining with sodium bicarbonate
resulted in brownish and greenish colorations. Color values
and intensity depended on wood species and the concentra-
tions of stains and tannic acid solution applied (Fig. 1).
Application rates for stains and tannic acid solutions are
presented in Table 1. Wood species, density, pH value, and
initial CIE L*a*b* color values are shown in Table 2. pH
values were reported in a similar range for white oak, red
oak, and yellow poplar by Campbell and Bryant (1941) and
Johns and Niazi (1980). However, the reported pH values
for western red cedar and southern yellow pine were lower
than the measured results, with 2.46 reported and 3.92
measured for western red cedar and 4.66 reported and 5.54
measured for southern yellow pine. The differences in
reported and measured pH values indicate that the extractive
concentration, which has a major influence on the pH value,
can vary significantly between individuals from the same
species. Thus, the color development of wood after applying
chemical stains must be predicted considering the chemical
composition of the specific specimens.

The average CIE L*a*b* color values before and after
staining and the average color changes (DE) are shown for
iron acetate in Table 3 and sodium bicarbonate in Table 4.
The CIE L*a*b* color values differed significantly between
the different concentrations of iron acetate. However, the
differences in the color values for the different sodium
bicarbonate concentrations were not always significant,

especially not for the values a* and b* as shown in Figure 2.
DE was consistently the highest for white oak, followed
closely by red oak and western red cedar. The species
yellow poplar and southern yellow pine showed the smallest
DE for both stains (Tables 3 and 4).

A direct comparison of color changes due to iron salts to
the literature is impossible, since concentrations and
application rates differ or are not consistently reported.
Furthermore, the variations in extractive content among
individual trees from the same species can result in
differences in color development, as pointed out above. In
the few publications on staining wood with iron salts, no
initial color values of the untreated wood are reported,
making a comparison of the development for single CIE
L*a*b* color values difficult. However, Dagher et al. (2020)
compared the color development of white oak, red oak,
sugar maple, and yellow birch after applying a 1 percent
weight/volume solution of ferric sulfate pentahydrate
(97%). The authors reported the strongest DE for white
oak, followed by red oak, consistent with the results
presented in Table 3. No color changes have been reported
in the literature for sodium bicarbonate on wood; hence no
comparison is possible.

A negative trend was observed for the relationship
between DE and the pH values, as the species with the
higher DE measured at lower pH. However, no direct
correlation can be assumed between DE and pH, since
western red cedar has a pH of 3.92, similar to white oak (pH
3.84) but a significantly smaller DE for all stains and
concentrations (Tables 2, 3, and 4).

Data analysis and modeling

The PCA cluster analysis for the raw NIR spectra of the
untreated wood specimen resulted in an excellent differen-
tiation between the wood species with three principal
components (Fig. 3), indicating a good database for
predictive modeling of the CIE L*a*b* color values after
application of the chemical stains considering the wood
chemistry. The ellipses drawn around the groups represent
the 95 percent confidence intervals. Since all data, without
outlier removal (LOF), were used for the cluster analysis,
some data points can be located outside of the 95 percent
confidence ellipses.

Summary tables with fit statistics as well as figures for all
transformations and variable combinations were generated
by the data analysis pipeline. An example table for the
prediction of CIE color value L* for five wood species
stained with three different concentrations of iron acetate is
presented in Table 5. Predictors for the PLSR models in
Table 5 were the NIR spectra of untreated wood and the
concentrations of iron acetate and tannic acid solutions.

Table 2.—Specifications for wood species with common and scientific name, density, pH value, and CIE L*a*b* color values of the
untreated wood.

Species

Density (g/cm3) pH value

Wood color raw (CIE L*a*b*)

Common Scientific L* a* b*

Yellow poplar (YP) Liriodendron tulipifera 0.52 6 0.03 4.86 6 0.02 82.09 6 0.71 2.74 6 0.09 15.90 6 0.32

White oak (WO) Quercus alba 0.80 6 0.08 3.84 6 0.03 65.83 6 1.26 6.80 6 0.31 20.84 6 0.45

Red oak (RO) Quercus rubra 0.76 6 0.04 3.86 6 0.02 66.67 6 1.72 8.99 6 0.63 19.10 6 0.48

Southern yellow pine (SYP) Pinus spp. 0.61 6 0.05 5.54 6 0.01 76.15 6 1.42 7.12 6 0.50 29.01 6 1.13

Western red cedar (WRC) Thuja plicata 0.35 6 0.05 3.92 6 0.02 60.64 6 0.50 11.76 6 0.16 28.61 6 0.14
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Additionally, Figure 4 shows an example output of
RMSEPcv and R2

cv as a function of latent variables (factors)
for the SG7 model presented in Table 5. The model SG7
was selected for further evaluation based on the lowest
RMSEPcv among the model list for 14 different transfor-
mations (Table 5). It is apparent that the values for R2

cv and
RMSEPcv vary only slightly between the models for the
different transformations. For operational use and to
minimize overfitting, a researcher might want to choose a
model based on the smallest number of factors instead of the
smallest RMSEPcv and highest R2

cv. For example, the model
SNV_DT could be selected with six factors and R2

cv ¼ 0.92
instead of model SG7 with eight factors and only slightly
higher R2

cv ¼ 0.94. However, the slight differences in the fit
statistics do not change any conclusion for the general

outcome of the CIE L*a*b* color value prediction drawn by
this work.

Table 6 presents the models selected in the screening
process that were further evaluated with a test data set as
presented in Table 7. The model fit statistics calculated with
the full dataset (Table 6) and the training/test dataset (Table
7) were very similar. However, it is noteworthy that the data
analysis pipeline optimized the number of factors based on
the training dataset, resulting in mostly smaller numbers of
latent variables. These changes in the number of factors
highlight the data analysis pipeline’s flexible model building
ability. Models were built, including the untreated wood’s
CIE L*a*b* color values as predictors, presented in Table 6,
rows 2 to 4. However, the predictors CIE L*a*b* of the
untreated wood did not result in increased R2

cv or decreased

Figure 1.—Color development of five wood species after application of iron acetate, sodium bicarbonate, and tannic acid solutions in
different concentrations. Where wood species are western red cedar (WRC), southern yellow pine (SYP), yellow poplar (YP), red
oak (RO), and white oak (WO).
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RMSEPcv consistently compared to models without CIE
L*a*b* color values of untreated wood as predictors (Table
6, rows 5 to 7). Additionally, a Jackknife analysis on the
significance of predictors did not result in a consistent or
high significance of the CIE L*a*b* color values of
untreated wood as predictors. Hence, the color values were
not used to build the models for further evaluation.

Generally, the best prediction was obtained by the models
for iron acetate with R2

cv of 0.92 to 0.95. Acceptable results
were obtained by the models for sodium bicarbonate with
R2

cv of 0.71 to 0.89. However, a global model for both stains
did not result in satisfactory predictions with R2

cv values of
0.46 to 0.76 (Table 6). The nonsignificant differences in the
CIE L*a*b* color values between the different concentra-
tions for the sodium bicarbonate stain (Fig. 2) are assumed
to be responsible for the inferior predictive performance of
models that include sodium bicarbonate.

Table 7 presents the fit statistics for the regression models
built with the training/test datasets. In addition to R2

cv and
RMSEPcv, the values for RPD and bias, as well as 95 percent
confidence intervals for the intercept (b0) and slope (b1), with
upper limit (UL) and lower limit (LL) are given. Figure 5
presents the scatterplots for the CIE L*a*b* color values for
model building (train dataset) and prediction (test dataset).
Desirable models show small bias values, slopes close to 1,
and intercepts close to 0. RPD values ranged from 2.35 to 3.75
for the iron acetate models, from 1.60 to 3.04 for the sodium
bicarbonate models, and from 1.19 to 1.85 for the models
including iron acetate and sodium bicarbonate. RPD values .2
were considered to indicate a good prediction ability for
models by Chang et al. (2001). However, a higher threshold
for RPD values was stated by Williams (2014). The RPD
values reflect the conclusions drawn based on the R2

cv,
indicating that the models for iron acetate show excellent

Table 3.—Mean and standard deviation (SD) for CIE L*a*b* color values before and after staining with iron acetate (Stain) and tannic
acid (T. acid) at different concentrations and color changes (DE) after staining. Where wood species are western red cedar (WRC),
southern yellow pine (SYP), yellow poplar (YP), red oak (RO), and white oak (WO).

Species

Concentration CIE L*a*b* for raw wood CIE L*a*b* for stained wood CIE76

Stain

(g/liter)

T. acid

(mg/liter) L*0 a*0 b*0 L* a* b* DE

WRC 0.05 0 61.07 6 0.68 11.72 6 0.25 28.17 6 0.57 57.06 6 0.69 12.92 6 0.23 30.67 6 0.32 4.89 6 0.25

WRC 0.1 0 60.76 6 0.46 11.72 6 0.15 28.48 6 0.35 52.76 6 0.57 11.19 6 0.64 27.17 6 0.79 8.18 6 0.90

WRC 0.2 0 60.44 6 0.37 11.68 6 0.12 28.51 6 0.27 44.59 6 0.60 5.76 6 0.34 18.54 6 0.65 19.65 6 0.75

SYP 0.2 0 78.06 6 1.02 6.28 6 0.35 28.29 6 0.76 74.16 6 1.43 7.15 6 0.35 32.74 6 0.72 6.09 6 0.59

SYP 0.2 300 77.05 6 0.84 7.05 6 0.32 28.47 6 0.83 70.19 6 1.75 6.70 6 0.42 29.14 6 1.52 7.13 6 0.94

SYP 0.2 600 77.44 6 2.00 6.59 6 0.70 28.20 6 0.48 66.07 6 1.30 5.24 6 0.43 24.88 6 0.76 11.96 6 1.28

YP 0.2 0 80.92 6 1.23 2.87 6 0.13 15.91 6 0.43 75.60 6 1.45 3.82 6 0.28 24.76 6 1.13 10.38 6 1.14

YP 0.2 300 81.43 6 1.57 2.89 6 0.28 15.87 6 0.40 71.92 6 0.85 3.16 6 0.28 19.38 6 0.44 10.15 6 0.71

YP 0.2 600 81.21 6 1.17 2.86 6 0.20 15.99 6 0.23 68.04 6 0.92 3.14 6 0.33 17.43 6 0.59 13.27 6 1.16

RO 0.05 0 67.46 6 1.39 8.76 6 0.20 19.45 6 0.38 62.47 6 1.11 6.94 6 0.17 16.67 6 0.36 6.00 6 0.30

RO 0.1 0 66.19 6 0.71 8.62 6 0.78 19.30 6 0.72 53.82 6 2.29 5.01 6 0.69 12.78 6 1.45 14.46 6 2.21

RO 0.2 0 67.51 6 1.68 7.73 6 0.23 18.91 6 0.29 36.33 6 0.69 2.90 6 0.14 0.49 6 0.53 36.54 6 1.77

WO 0.05 0 65.98 6 1.08 6.64 6 0.29 20.68 6 0.51 59.67 6 0.63 5.57 6 0.25 18.12 6 0.56 6.93 6 0.62

WO 0.1 0 64.95 6 1.27 6.89 6 0.23 21.01 6 0.30 50.26 6 0.58 3.53 6 0.42 12.65 6 1.08 17.24 6 1.29

WO 0.2 0 64.71 6 1.43 7.06 6 0.37 21.12 6 0.66 31.86 6 1.61 1.55 6 0.14 0.74 6 0.97 39.05 6 2.06

Table 4.—Mean and standard deviation (SD) for CIE L*a*b* color values before and after staining with sodium bicarbonate (Stain)
and tannic acid (T. acid) at different concentrations and color changes (DE) after staining, where wood species are western red
cedar (WRC), southern yellow pine (SYP), yellow poplar (YP), red oak (RO), and white oak (WO).

Species

Concentration CIE L*a*b* for raw wood CIE L*a*b* for stained wood CIE76

Stain

(M)

T. acid

(mg/liter) L*0 a*0 b*0 L* a* b* DE

WRC 0.1 0 59.96 6 0.52 11.89 6 0.13 28.27 6 0.24 53.50 6 1.07 9.24 6 0.26 24.68 6 0.64 7.86 6 0.71

WRC 0.5 0 60.72 6 0.58 11.77 6 0.19 28.30 6 0.39 48.51 6 0.78 6.45 6 0.16 22.32 6 0.61 14.60 6 0.48

WRC 1 0 60.06 6 0.46 11.92 6 0.12 28.42 6 0.28 47.40 6 0.57 6.02 6 0.06 20.99 6 0.54 15.82 6 0.35

SYP 1 0 76.99 6 0.73 6.75 6 0.34 29.00 6 0.81 76.85 6 0.79 6.77 6 0.32 29.23 6 0.80 0.36 6 0.23

SYP 1 300 78.14 6 1.15 6.38 6 0.55 28.43 6 0.75 70.94 6 1.42 5.21 6 0.28 31.74 6 1.08 8.16 6 0.62

SYP 1 600 77.79 6 1.75 6.42 6 0.64 28.20 6 0.46 69.82 6 2.00 5.57 6 0.39 32.82 6 0.53 9.32 6 0.50

YP 1 0 81.57 6 1.33 2.84 6 0.15 15.95 6 0.50 81.56 6 1.28 2.85 6 0.16 15.99 6 0.46 0.11 6 0.05

YP 1 300 80.61 6 1.50 2.88 6 0.19 15.85 6 0.34 76.50 6 1.40 2.32 6 0.18 25.10 6 0.60 10.14 6 0.74

YP 1 600 81.38 6 1.21 2.75 6 0.24 15.80 6 0.38 76.22 6 1.16 2.52 6 0.25 26.90 6 0.68 12.25 6 0.81

RO 0.1 0 67.32 6 0.81 8.37 6 0.34 19.00 6 0.43 66.47 6 0.89 7.75 6 0.35 19.17 6 0.62 1.23 6 0.29

RO 0.5 0 65.77 6 1.53 8.49 6 0.87 18.89 6 0.67 50.86 6 0.77 3.36 6 0.35 18.93 6 1.63 15.95 6 1.18

RO 1 0 67.11 6 1.32 8.11 6 0.51 19.02 6 0.35 43.25 6 1.44 3.09 6 0.71 18.31 6 1.01 24.43 6 2.41

WO 0.1 0 64.92 6 1.77 7.17 6 0.34 21.32 6 0.50 61.89 6 1.71 7.29 6 0.72 23.00 6 0.58 3.51 6 0.38

WO 0.5 0 65.69 6 1.16 6.90 6 0.30 21.09 6 0.38 45.60 6 1.51 7.94 6 0.48 23.49 6 1.18 20.29 6 0.65

WO 1 0 66.80 6 0.97 6.48 6 0.23 20.49 6 0.51 41.85 6 1.21 8.97 6 0.21 23.92 6 0.86 25.33 6 0.66
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predictive performance while the models for sodium bicar-

bonate are acceptable but not optimal. In contrast, the global

models, including iron acetate and sodium bicarbonate, did not

satisfactorily predict the CIE L*a*b* color values, considering

the low RPD values (Table 7).

Figure 2.—Color development after application of iron acetate
(ia) and sodium bicarbonate (sb) stain in three different
concentrations to white oak specimen. CIE L*a*b* color values
show significant differences between the different concentra-
tions for iron acetate. The differences between the three
concentrations of sodium bicarbonate are not significant,
especially not for the CIE values a* and b*.

Figure 3.—PCA cluster analysis for NIR spectra of untreated wood with 95 percent confidence interval (ellipses) for groups. PCA for
principle components (A) PC1 and PC2 and for (B) PC1 and PC3. Wood species are southern yellow pine (SYP), red oak (RO),
white oak (WO), western red cedar (WRC), and yellow poplar (YP).

Table 5.—Example for screening data of model built for five
wood species stained with three concentrations of iron acetate
and tannic acid predicting the response variable L*. PLSR
models were built for 14 different transformations (Database) of
NIR spectra for the untreated wood species RO, WO, YP, SYP,
and WRC. As categorical predictors the three different stain
concentrations (0.05, 0.1, 0.2 g/liter) as well as the three
different concentrations of tannic acid (0, 300, 600 mg/liter)
were used to build the model. The model for transformation,
SG7, was selected based on the smallest RMSEPcv and used
for further comparison with models built based on other
predictor combinations (Fig. 4).

Databasea Factorsb R2
c

c RMSEPc
d R2

cv
e RMSEPcv

f

SNV 6 0.93 3.56 0.91 3.82

MSC 7 0.94 3.30 0.92 3.67

DT 7 0.95 3.06 0.92 3.56

SG5 8 0.95 2.86 0.90 3.99

SG7 8 0.96 2.73 0.94 3.26

SNV_DT 6 0.93 3.43 0.92 3.70

MSC_DT 6 0.93 3.43 0.91 3.81

SNV_SG5 7 0.95 3.03 0.92 3.64

SNV_SG7 7 0.95 2.83 0.92 3.55

MSC_SG5 7 0.95 3.03 0.92 3.59

MSC_SG7 7 0.95 2.91 0.93 3.35

DT_SG5 7 0.95 3.03 0.92 3.75

DT_SG7 7 0.95 2.83 0.93 3.45

NIR 12 0.96 2.61 0.91 3.76

a SNV, standard normal variate; MSC, multiplicative scatter correction; DT,

detrend; SG5 and SG7, Savitzky-Golay smoothed spectra using five and

seven points; pairs of transformation; NIR, untreated spectra (log R�1).
b Number of loading factors (latent variables) in the partial least squares

regression models.
c R2

c , coefficient of determination, calibration.
d RMSEPc, root mean squared error of prediction of calibration.
e R2

cv, coefficient of determination, cross-validation.
f RMSEPcv, root mean squared error of prediction of cross-validation.
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The bias values, describing the average by which the
actual values are greater than the predicted values, range
from�0.32 to�0.82 for the iron acetate models, from 0.08
to 1.35 for the sodium bicarbonate models, and from�0.13
to�1.48 for the global models. It is noteworthy that the CIE
L*a*b* color space has a very high resolution. A color
difference (DE) of 0 to 0.5 cannot be perceived by the
human eye. DE of 0.5 to 1 is only perceivable for
experienced observers, while DE of 1 to 2 is perceived as
a minimal color difference. DE . 2 is recognized as an
apparent color difference (Wright 1929, Wyszecki and
Fielder 1971, Witzel et al. 1973). The calculation of DE (Eq.
1) with the bias values results in an average DE ¼ 1.16 for
the iron acetate model, DE ¼ 1.41 for the sodium
bicarbonate model, and DE ¼ 1.52 for the global model,

indicating that the average color differences between actual
and predicted color for all models are minimal as perceived
by the human eye, and the smallest for the iron acetate
model.

The results at hand show a promising outlook for inline
assessment of the wood chemistry by NIR spectroscopy in
industrial processes that involve chemical stain application to
wood surfaces. Future work needs to include more species and
more individuals of the same species in the data set.
Furthermore, different chemical stains and a broader range
of different concentrations should be added to the data set to
increase the range and accuracy of the predictions. Especially
for the stain sodium bicarbonate, different concentrations have
to be chosen, since the color development for the concentra-
tions 0.5 M and 1 M was very similar.

Figure 4.—Examples for fit statistics (A) RMSPEcv and (B) R2
cv as a function of latent variables (factors) for the SG7 model presented

in Table 5, predicting the response variable L*. Optimum number of factors is selected by ‘‘onesigma’’ approach (Hastie et al. 2009)
as presented in (A).

Table 6.—Example data for model screening with different stain combinations as well as different predictor combinations. All models
were built with five wood species. Including the CIE L*a*b* color values as predictors did not improve the model consistently
comparing rows 2 to 4 and 5 to 7. The model for iron acetate (ia) presents good R2

cv.

Staina Predictorsb CIEc Databased Factorse

Calibrationf Cross-validationg

R2
c RMSEPc R2

cv RMSEPcv

ia, sb NIR, stain, conc, tac, Lab L* MSC 7 0.79 6.44 0.77 6.66

ia, sb NIR, stain, conc, tac, Lab a* MSC_DT 9 0.60 1.69 0.48 1.85

ia, sb NIR, stain, conc, tac, Lab b* MSC_SG5 2 0.46 5.69 0.45 5.73

ia, sb NIR, stain, conc, tac L* SG5 8 0.81 6.10 0.76 6.73

ia, sb NIR, stain, conc, tac a* SG5 5 0.49 1.91 0.46 1.96

ia, sb NIR, stain, conc, tac b* NIR 6 0.51 5.42 0.47 5.62

ia NIR, conc, tac L* SG7 8 0.96 2.73 0.94 3.26

ia NIR, conc, tac a* DT_SG7 7 0.95 0.66 0.92 0.82

ia NIR, conc, tac b* MSC_DT 7 0.96 1.87 0.95 2.07

sb NIR, conc, tac L* MSC_SG7 7 0.93 3.62 0.89 4.44

sb NIR, conc, tac a* SNV_SG7 5 0.76 1.14 0.71 1.24

sb NIR, conc, tac b* DT 7 0.90 1.49 0.87 1.64

a ia, iron acetate; sb, sodium bicarbonate.
b NIR, near-infrared spectra; stain, stain type; conc, stain concentration; tac, tannic acid concentration; Lab, CIE L*a*b* values of untreated wood.
c CIE L*a*b* response variables.
d SNV, standard normal variate; MSC, multiplicative scatter correction; DT, detrend; SG5 and SG7, Savitzky-Golay smoothed spectra using five and seven

points; Pairs of transformation; NIR, raw spectra (log R�1).
e Number of loading factors (latent variables) in the partial least squares regression models.
f Coefficient of determination, and root mean squared error of prediction of calibration.
g Coefficient of determination, and root mean squared error of prediction of cross-validation.
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Conclusions

CIE L*a*b* color values after applying chemical stains in
three different concentrations to five wood species could be
predicted successfully by PLSR models based on NIR
spectra of the untreated wood specimen and categorical
predictors describing the chemical stains. The best predic-

tive performance was found in models for the stain iron

acetate with the highest R2
cv and RPD as well as lowest

RMSEPcv, and bias. Models for sodium bicarbonate were

acceptable but will need improvement through future work.

Global models, including iron acetate and sodium bicar-

bonate, did not perform satisfactorily. The similarity in

Table 7.—Validation results for selected models including calculation of RPD, bias, intercept (b0) and slope (b1) as 95 percent
confidence intervals.

Staina Predictorsb CIEc Databased Factorse

Calibrationf Cross-validationg

RPDh Biasi

Intercept (b0)j Slope (b1)k

R2
c RMSEPc R2

cv RMSEPcv b0_LL b0_UL b1_LL b1_UL

ia, sb NIR, stain, conc, tac L* SG5 7 0.80 6.25 0.73 7.23 1.85 �0.13 �5.21 5.21 0.92 1.08

ia, sb NIR, stain, conc, tac a* SG5 5 0.46 2.01 0.40 2.11 1.47 �0.33 �1.10 1.10 0.82 1.18

ia, sb NIR, stain, conc, tac b* NIR 5 0.40 5.74 0.35 5.99 1.19 �1.48 �4.61 4.61 0.80 1.20

ia NIR, conc, tac L* SG7 8 0.96 2.65 0.93 3.50 3.33 �0.77 �2.98 2.98 0.95 1.05

ia NIR, conc, tac a* DT_SG7 3 0.92 0.88 0.91 0.92 2.35 �0.32 �0.47 0.47 0.93 1.08

ia NIR, conc, tac b* MSC_DT 5 0.94 2.33 0.93 2.49 3.75 �0.82 �1.27 1.27 0.94 1.06

sb NIR, conc, tac L* MSC_SG7 6 0.90 4.37 0.85 5.15 3.05 1.35 �5.22 5.22 0.91 1.09

sb NIR, conc, tac a* SNV_SG7 5 0.79 1.07 0.75 1.18 1.60 0.08 �0.79 0.79 0.87 1.13

sb NIR, conc, tac b* DT 7 0.89 1.44 0.84 1.71 3.04 �0.41 �2.15 2.15 0.91 1.09

a ia, iron acetate; sb, sodium bicarbonate.
b NIR, near-infrared spectra; stain, stain type; conc, stain concentration; tac, tannic acid concentration; Lab, CIE L*a*b* values of untreated wood.
c CIE L*a*b* response variables.
d SNV, standard normal variate; MSC, multiplicative scatter correction; DT, detrend; SG5 and SG7, Savitzky-Golay smoothed spectra using five and seven

points; Pairs of transformation; NIR, raw spectra (log R�1).
e Number of loading factors (latent variables) in the partial least squares regression models.
f Coefficient of determination, and root mean squared error of prediction of calibration.
g Coefficient of determination, and root mean squared error of prediction of cross-validation.
h Ratio of performance to deviation.
i Average difference between predicted and actual values.
j, k 95 percent confidence intervals with lower limit (LL) and upper limit (UL).

Figure 5.—Scatterplots of predicted vs. actual CIE L*a*b* color values for calibration models built with training dataset including
cross-validation with R2

cv and RMSEPcv (upper graphs) and prediction of CIE L*a*b* color values for test data set with RPD and bias
for performance evaluation (lower graphs). The models were built for five wood species stained with iron acetate.
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color development between the different sodium bicarbon-
ate concentrations is assumed to be responsible for the
inferior performance of models that include sodium
bicarbonate. However, given that a color difference (DE)
of 1 to 2 is perceived as minimal by the human eye, the
predicted values are well within an acceptable range. The
developed models will be useful for online prediction of
color development in industrial staining processes of wood
applying chemical stains.
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