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Abstract
Firms engaged in producing, processing, marketing, or using lumber and lumber products always invest in futures markets

to reduce the risk of lumber price volatility. The accurate prediction of real-time prices can help companies and investors
hedge risks and make correct market decisions. This paper explores whether Internet browsing habits can accurately nowcast
the lumber futures price. The predictors are Google Trends index data related to lumber prices. This study offers a fresh
perspective on nowcasting the lumber price accurately. The novel outlook of employing both machine learning and deep
learning methods shows that despite the high predictive power of both the methods, on average, deep learning models can
better capture trends and provide more accurate predictions than machine learning models. The artificial neural network
model is the most competitive, followed by the recurrent neural network model.

Lumber futures have been traded at Chicago Mercantile
Exchange since 1969 (Mehrotra and Carter 2017). Since the
COVID-19 pandemic, the lumber futures price has experi-
enced huge volatility. Figure 1 plots the daily opening price
of lumber futures from May 3, 2011, to May 28, 2021. The
opening price of lumber futures plummeted on April 1, 2020,
then it returned to normal levels seen prior to the pandemic.
After that, it continued to climb steeply and finally reached its
highest point in 10 years on May 7, 2021, with $1,677 per
thousand board feet (mbf). It was $425.9 per mbf on January
21, 2020, when the first COVID-19 case in the United States
was confirmed (Sahu and Kumar 2020). The average opening
price from May 2011 to January 2020 was $337 per mbf,
while the average opening price from February 2020 to May
2021 was $698 per mbf. The unusual fluctuations exposed
lumber futures products that were originally designed to
hedge uncertainties to huge risks. Therefore, there is an
urgent need to find a reliable method to predict the lumber
futures price, which would help enterprises and investors
hedge risks and make correct decisions in the market.

In recent decades, several lumber price prediction methods
have been proposed, such as ordinary least-squares regression
(Mehrotra and Carter 2017), vector autoregressive model
(VAR) (Song 2006), autoregressive integrated moving

average model (ARIMA) (Buongiorno and Balsiger 1977,

Oliveira et al. 1977, Banaś and Utnik-Banaś 2021), seasonal

autoregressive moving average model (SARIMA) (Banaś and

Utnik-Banaś 2021), seasonal autoregressive moving average

model with exogenous variables (SARIMAX) (Banaś and

Utnik-Banaś 2021), forest simulation model (FORSIM)

(Buongiorno et al. 1984), and sales & operations planning

network model (Marier et al. 2014). Most of the literature on

lumber price prediction is based on traditional statistical

models (Marier et al. 2014), econometric models (Banaś and
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Utnik-Banaś 2021, Buongiorno and Balsiger 1977, Mehrotra
and Carter 2017, Oliveira et al. 1977, Song 2006), or
mathematical models (Buongiorno et al. 1984). So far, only
one paper has used a recurrent neural networks model, which
is a deep learning method to predict the closing price of
lumber futures in the next few days using the price obtained
from the previous few days (Verly Lopes et al. 2021).

In other domains, machine learning models and deep
learning models were widely used for time series forecast-
ing. A support vector machine (SVM) method was
employed to forecast the daily electrical load (Singh and
Mohapatra 2021) or wind speed (Gangwar et al. 2020). A
random forest method was conducted in other studies to
estimate poverty (Zhao et al. 2019) or the biomass weight of
wheat (Zhou et al. 2016). XGBoost was run to forecast
crude oil price (Gumus and Kiran 2017) or sales of the
enterprise (Gurnani et al. 2017, Ji et al. 2019). Classification
and regression tree (CART) was carried out to forecast
precipitation (Choubin et al. 2018) or currency exchange
rate (Haeri et al. 2015). And the deep learning models,
including artificial neural network (ANN), recurrent neural
network (RNN), and convolutional neural network (CNN),
were applied to forecast construction material prices (Mir et
al. 2021), photovoltaic power (Abdel-Nasser and Mahmoud
2019), gas demand (Su et al. 2019a), stock markets
(Hoseinzade and Haratizadeh 2019), or river discharges
(Awchi 2014). Overall, machine learning models and deep
learning models have been widely employed to predict
economic indicators, socioeconomic indicators, and science
indicators. Machine learning models and deep learning
models are statistical approaches. Compared to the tradi-
tional econometric models, they capture the hidden
nonlinear characteristics among variables and provide more
accurate predictions, while the econometric models are
based on strict linear assumptions (Herrera et al. 2019) and
might overfit the sample and yield forecasting error
(Shobana and Umamaheswari 2021).

Some previous studies predicted the future lumber price
based on the past values, which is an autoregressive
technique (Song 2006). Other studies use some exogenous
independent variables to predict lumber prices, such as the
construction confidence index (Banaś and Utnik-Banaś 2021)
and specific characteristics of the lumber supply chain
(Marier et al. 2014). Models that include exogenous
independent variables can produce good prediction results

because the exogenous variables normally contain more
information. However, none of these studies included public
attention as an exogenous variable. Google is the most
popular search engine in the United States. Google Trends is
a publicly available service provided by Google. It provides
access to aggregated information about different search
queries and how those queries change over time. The Google
Trends index is an index measuring the search volume of
different queries over time. Users can use the Google Trends
index to observe changes in the query volume of certain
keywords over time and compare the query volume of
different keywords over time. This provides an opportunity to
capture the interest and concern of the public in real time
without any cost. Therefore, Google Trends index is widely
used to predict economic indicators and socioeconomic
indicators, such as sales, unemployment, travel, consumer
confidence (Choi and Varian 2012), consumer behavior
(Carrière-Swallow and Labbé 2013), housing market (Dietzel
2016), the stock price (Hu et al. 2018), and so on.

This prospective study aims to use the Google Trends
index of some keywords from the previous day to predict
the next day’s opening price of lumber futures. Nowcasting
is the process of predicting the present, the very near future,
or the very recent past value of an indicator based on real-
time data (Banbura et al. 2010, Chumnumpan and Shi
2019). Nowcasting the opening price of lumber futures can
help investors to take appropriate actions during the
premarket trading hours between 8:00 a.m. to 9:30 a.m.
Eastern each trading day. It would have a beneficial impact
on hedging risks and expanding trade opportunities (Dungey
et al. 2009). It would also be useful in helping enterprises
navigate during normal and unusual times such as a
pandemic. The statistical significance of the keywords of
the Google Trends index will change over time. In other
words, different factors have various effects on lumber
futures price in different situations. The models can
dynamically select the keyword variables in different time
periods. As a result, the components of variables will
change to capture dynamic trends of the real world. This
study fills the gap in the literature by using machine learning
and deep learning models to nowcast the lumber futures
prices via Google Trends index.

This paper consists of five sections. The ‘‘Data’’ section
briefly introduces the data. The ‘‘Prediction Models’’
section describes the models adopted in this study. The
‘‘Results and Discussion’’ section presents and discusses the
results, and the ‘‘Conclusion’’ section concludes this study.

Data

Data collection

The Chicago Mercantile Exchange lumber futures price
daily data were extracted from Investing.com. The dataset
includes opening price, closing price, highest price, and
lowest price of lumber futures. The data are from May 2011
to May 2021, with a total of 2,523 entries of data. The
opening price of lumber futures is plotted in Figure 1.

The actual Google search requests for some lumber
price–related keywords were then extracted from Google
Trends index to match the same time series as the lumber
price datasets. Keyword variables include 2 by 4 (a length of
sawn wood 2 inches thick and 4 inches wide), BDFT (board
foot), CLT (cross-laminated timber), commodity, DIY (do it
yourself), fire, forest products association, forestry, hard-

Figure 1.—The opening prices of lumber futures, United States,
May 2011 to May 2021.
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wood, harvest, home building, home improvement, home
renovation, invest, logging, logs, lumber futures, lumber
price, lumber yard, MDF (medium density fiberboard), OSB
(oriented strand board), plywood, sawmill, softwood, stock
market, timber, and wood. Research has seen an effect on
the lumber prices for a reduction in the quality of softwood
lumber or in that case any lumber. Hence, more general
keywords were included instead of the specific kinds of
lumber. For example, the Southern pine and Douglas-fir
lumber, which are the two most commercially important
types of softwood lumber, have not changed in strength and
stiffness over the last five decades (Miyamoto et al. 2018,
França et al. 2021, Shmulsky et al. 2021), and thus they
were not included in the keywords.

Google Trends index will standardize the data to a scale
of 0 to 100 to represent the ‘‘interest over time.’’ But the
scale of this data set will change if the same variable is
colisted with other keywords or if the time range is changed.
Therefore, it is important to always extract the same
combination of words in the same time range during the
modeling and prediction process to avoid restandardization
of the same data set to different scales. However, the many
years of daily keyword data cannot be downloaded directly
from Google Trends. In order to avoid restandardization,
application programming interface (API) was applied to
extract Google Trends index data via R. The library
‘‘gtrendsR’’ on R was employed to extract the Google
Trends index, and it retrieves the index via APIs. The
descriptive statistics of opening price and closing price of
lumber futures price and the whole Google Trends index of
keywords is provided in Table 1.

Variable selection

To increase the model interpretability, remove redundant
or irrelevant variables, and reduce overfitting, least absolute
shrinkage and selection operator (LASSO) was first applied
to perform independent variable selection (Fonti and
Belitser 2017). The LASSO estimate can be written as

b̂ ¼ arg min
b

1

2

XN

i¼1

ðyi � b0 �
Xp

j¼1

xijbjÞ2 þ k
Xp

j¼1

jbjj

8<:
9=; ð1Þ

where k � 0 is a constant parameter that controls the
strength of regularization. The value of k is directly
proportional to the amount of regularization (Muthukrishnan
and Rohini 2016, Fonti and Belitser 2017). In the LASSO
process, the variables that have nonzero coefficients after
the regularization are selected as part of the model (Fonti
and Belitser 2017). As a result, the lumber futures closing
price, and the Google Trends index of the four terms ‘‘2 by
4,’’ ‘‘commodity,’’ ‘‘invest,’’ and ‘‘lumber futures’’ were
selected as the feature inputs of the models (Table 2). Figure
2 plots the daily Google Trends index of the above
keywords from May 3, 2011, to May 28, 2021.

Sample splitting

Before building up the models, the dataset was divided
into two subsets: a training set and a test set, which can
avoid overfitting the models and improve the accuracy of
the models (LeCun et al. 2015, Roelofs et al. 2019). The
models will be trained on the training set, and the fitted
models will be used to estimate the predicted value in the
test set, which can provide an evaluation of the models. The

different splitting rate of the data set is selected in respect to
the object of characteristics of the studied subjects (Tao et
al. 2020, Nguyen et al. 2021) and the sample size (Tai et al.
2019). In this study, considering that the lumber price does
not fluctuate abnormally until the second half of 2020 and
there are thousands of entries of samples, the splitting rate
of the data set is determined to be 95 percent. The training
set and the test set contain 95 and 5 percent of the total
sample, respectively, which means the data of the first nine
and a half years (May 3, 2011, to November 24, 2020) was
used as the training set, and the data of the last six months
(November 25, 2020, to May 28, 2021) will be used as the
test set.

Prediction Models

Machine learning (ML) models and deep learning (DL)
models have emerged with the advent of big data technology
and gained in popularity as frontier prediction methods
(Liakos et al. 2018). Machine learning models are the
algorithms of providing machines the ability to optimize the
performance without being strictly programmed (Schmidt et
al. 2019, Kadam et al. 2020). Machine learning models
include support vector machine (SVM), random forest,
XGBoost, classification and regression trees (CART), and
many more (Friedman et al. 2001). Deep learning models are
defined as representation-learning algorithms composed of
processing units organized in input, hidden layers, and output
layers (LeCun et al. 2015, Shrestha and Mahmood 2019).
Deep learning models include artificial neural network
(ANN), recurrent neural network (RNN), and convolutional
neural network (CNN) (Miotto et al. 2018).

Machine learning models

Support vector machine.—Support vector machine is an
algorithm that maximizes a specific mathematical function
based on a given data set (Noble 2006). SVM can be applied
to time series prediction by introducing kernel functions
(Pyo et al. 2017). In the SVM, the input vector x is mapped
to the high-dimensional feature space using the nonlinear
mapping function U(x) and run regression in the space
(Wang et al. 2008). The SVM can be represented as the
following equation:

dySVM ¼ bþ
Xn

i

wiUiðxÞ ð2Þ

where dySVM is the predicted value, parameters b and wi can
be estimated by minimizing the regularized risk function:

RðCÞ ¼ C
1

n

Xn

i¼1

Leðy; dySVMÞ þ
1

2
jjwjj2 ð3Þ

where C is a regularization constant, y is the actual value, Le

is the loss function, (1/2)jjwjj2 is a measurement of function
flatness. By introducing the kernel function K (x, y),
Equation 2 can be transformed into the explicit form:

fSVMðx; ]i; ]
*
i Þ ¼
Xn

i¼1

ð]i � ]*
i ÞKðx; xiÞ þ b ð4Þ

where ]i and ]i
* are the Lagrange multipliers which satisfy

the condition: ]i 3 ]i
*¼ 0, ]i � 0 and ]i

* � 0 (Choudhry and
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Garg 2008, Wang et al. 2008). In this study, the K (x, xi) is
the polynomial kernel function:

Kðx; xiÞ ¼ ðxxiÞ3 ð5Þ
where xi is the sample in the training set (Choudhry and
Garg 2008).

Random Forest.—Random forest is an algorithm that
obtains the output by combining many decision trees to
form forests (Breiman 2001). Specifically, it selects a
bootstrap sample from the training set, which is selected
randomly with replacement, and then obtains the optimal
split point to split the node into two subtrees by minimizing
mean squared error (MSE), which is called growing a
random forest tree, Tm. After creation of M trees, the final
output of random forest is defined as (Huang and Liu 2019,
Peng et al. 2021, Yoon 2021):

cyRF ¼
1

M

XM

m¼1

TmðxÞ ð6Þ

XGBoost.—XGBoost is a regression tree algorithm,
which is also called extreme gradient boosting. XGBoost
is based on the gradient boosting decision tree algorithm and
applies the addition of regularization terms to control the
complexity of the model, which can prevent overfitting and
improve the accuracy (Peng et al. 2019). As a result, the
objective functions consist of two parts: training loss L(h)
and regularization X(h):

objðhÞ ¼ LðhÞ þ XðhÞ ð7Þ

where h is the parameter (Gurnani et al. 2017, Peng et al.
2019). The training loss is defined as:

LðhÞ ¼
Xn

i¼1

ðyi � dyXGBiÞ ð8Þ

where yi is the actual value. In the XGBoost, each inner
node represents the value of the attribute test, and the leaf
node with values represents a decision (Xie and Zhang
2021). dyXGBi is the output, which is the sum of all predict
values form M trees and can be written in the form:

dyXGBi ¼
XM

m¼1

fmðxiÞ; fm�F ð9Þ

where m is the number of trees, xi is the ith training sample,
fm is the value for the mth tree in the functional space F
(Peng et al. 2019, Xie and Zhang 2021).

The target function can be finally expressed as:

objðhÞ ¼
Xn

i¼1

Lðyi; dyXGBiÞ þ
XM

m¼1

XðfmÞ ð10Þ

Classification and regression trees.—Classification and
regression trees (CART) is a nonparametric statistical model,
which is employed for classification problems or regression
problems. If the output variable is continuous, the CART
model will generate a regression tree. The CART tree is a
hierarchical binary tree that is built up by splitting subsets of

Table 1.—Descriptive statistics of lumber price and Google trends index, United States, May 2011 to May 2021.

Count Mean Std Min 25% 50% 75% Max

Google trends index

2 by 4 2523 0.014 0.017 0.000 0.004 0.007 0.018 0.148

BDFT 2523 0.003 0.024 0.000 0.000 0.000 0.000 0.500

CLT 2523 0.185 0.093 0.000 0.111 0.174 0.249 0.500

Commodity 2523 0.060 0.027 0.007 0.040 0.057 0.073 0.260

DIY 2523 2.053 1.362 0.200 1.210 1.950 2.400 12.420

Fire 2523 31.476 9.235 7.360 25.440 30.680 36.580 100.000

Forest products association 2523 0.013 0.073 0.000 0.000 0.000 0.000 0.890

Forestry 2523 0.429 0.131 0.070 0.336 0.420 0.507 1.000

Hardwood 2523 0.082 0.034 0.020 0.060 0.080 0.100 0.210

Harvest 2523 0.357 0.181 0.050 0.240 0.300 0.450 2.240

Home building 2523 0.054 0.018 0.007 0.042 0.052 0.064 0.153

Home improvement 2523 0.041 0.060 0.000 0.010 0.020 0.030 0.400

Home renovation 2523 0.033 0.022 0.000 0.016 0.030 0.047 0.126

Invest 2523 1.523 0.694 0.304 1.035 1.382 1.849 6.000

Logging 2523 0.650 0.130 0.231 0.557 0.650 0.739 0.990

Logs 2523 0.042 0.021 0.010 0.020 0.040 0.060 0.140

Lumber futures 2523 0.0001 0.0007 0.0000 0.0000 0.0000 0.0000 0.0128

Lumber price 2523 0.001 0.004 0.000 0.000 0.000 0.001 0.044

Lumber yard 2523 0.008 0.007 0.000 0.003 0.006 0.011 0.046

MDF 2523 0.197 0.078 0.018 0.143 0.191 0.248 0.470

OSB 2523 0.226 0.123 0.000 0.140 0.211 0.291 1.000

Plywood 2523 0.777 0.273 0.207 0.577 0.740 0.918 2.000

Sawmill 2523 0.475 0.148 0.080 0.370 0.466 0.572 0.980

Softwood 2523 0.0002 0.0002 0.0000 0.0000 0.0002 0.0004 0.0028

Stock market 2523 0.707 2.003 0.020 0.150 0.280 0.540 35.000

Timber 2523 1.544 0.333 0.619 1.325 1.530 1.734 3.230

Wood 2523 12.518 4.947 3.630 9.180 11.760 15.360 37.600

Opening price of lumber futures 2523 384.8 186.1 211.9 292.5 336.6 390.5 1677.0

Closing price of lumber futures 2523 384.7 186.7 209.7 292.7 336.3 390.0 1686.0
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the data set by applying all output variables to generate two
subnodes repeatedly. For determining the splitting, each
predictor is evaluated to discover the best cut point, based on
the least-squares deviation (LSD) impurity measure, R(t)
(Mahjoobi and Etemad-Shahidi 2008, Samadi et al. 2014):

RðtÞ ¼ 1

NxðtÞ

X
i�x

xifi

�
yi � ȳCARTðtÞ

�2

ð11Þ

where Nx(t) is the weighted number of records at node t, xi is
the value of the weighting field for record i, fi is the value of
the repeat field, yi is the value of the target field, and ȳCART(t)
is the mean of the output variable at node t.

Deep Learning Models

Artificial neural network model.—The artificial neural
network (ANN) model connects the units called artificial
neurons to generate complex networks (Kurbatsky et al.
2014, Su et al. 2019b). In each unit, there is an activation
function, f, which applies the input variables, xi, to generate
the output value. The output of a unit conveyed to next unit
as an input via a weighted connection. Given a unit, j, the
output of this unit can be expressed as (Su et al. 2019b):

dyANNi ¼ fANN

Xn

i¼1

xijxi þ tj

 !
ð12Þ

where xij is the connection weights and tj is the bias term. The
activation function, fANN, is rectified linear unit activation
function in this study. The ANN model in this study is
composed of an input layer, seven hidden layers, and an output
layer. The output layer sums up the output of units from hidden
layers. Different values of hyperparameter were tested, and the
model with the best performance has a batch size 8, epochs
100, an optimizer of Adam, loss function of mean squared
error, and one hidden layer with 64 units in this study.

Recurrent Neural Network.—Recurrent neural network
(RNN) is a model of neural network. It applies the previous
values of observations to calculate the future value by
connecting the computational units from a directed circle
(Selvin et al. 2017, Moghar and Hamiche 2020). However,
the RNN confronts two problems: vanishing gradient and
exploding gradient (Bouktif et al. 2018). As a result, long
short-term memory (LSTM) was introduced to solve these
problems in this study. The usually hidden layers were
replaced with LSTM cells. The LSTM cells consist of input
gate, forget gate, output gate, and cell state, which makes it
possible to control the gradient flow and then overcome the
vanishing and exploding gradient problems (Selvin et al.

2017, Bouktif et al. 2018). The LSTM cell can be expressed
as (Bouktif et al. 2020):

ft ¼ rðWf � ht�1; xt½ � þ bf Þ ð13Þ

it ¼ rðWi � ht�1; xt½ � þ biÞ ð14Þ

ct ¼ tanhðWc � ht�1; xt½ � þ bcÞ ð15Þ

ot ¼ rðWo � ht�1; xt½ � þ boÞ ð16Þ

ht ¼ ot*tanhðctÞ ð17Þ
where xt is input vector at time t; ht�1 and ht are output
vector of hidden units at time t� 1 and time t, respectively;
ft, it, and ot are forget, input, and output gate vector,
respectively; ct is the cell state vector; and W* and b* are
the weight matrices and bias vector parameters of the LSTM
unit, respectively. In this study, the RNN model is
composed of an LSTM layer with 500 units and has epochs
50, batch size 9, an optimizer of Adam, and loss function of
mean squared error. The activation function and recurrent
activation function are hyperbolic tangent activation func-
tion and hard sigmoid activation function, respectively.

Convolutional neural network.—Convolutional neural
network (CNN) is a class of feedforward neural networks,
which can be effectively applied in image recognition,
natural language processing, and time series data prediction
(Lu et al. 2020). CNN consists of convolution layer, pooling
layer, and fully connected layers. It extracts data features via
the convolution layer and connects the units locally using
the pooling layer, which reduces the redundant features
(Chen et al. 2021). Then it converts the features in the
previous layers to the final output using fully connected
layers, which can be expressed as (Balaji et al. 2018):

dyCNNi
j ¼ fCNN

X
k

dyCNNk
j�1w

j�1
k;i

 !
ð18Þ

where dyCNNi
j is the output value of unit i at the layer

j, dyCNNk
j�1 is the output value of unit k at the layer j � 1,

fCNN is the activation function. In this study, the activation
function of CNN is rectified linear unit activation function.
w

j�1
k;i is the weight of the connection between unit k at layer

j�1 and unit i at layer j. In this study, the data is convoluted
through a Conv-1D layer within 16 units, and then the max
pooling layer. Next, the data are convoluted through another
Conv-1D layer within 32 units, and then the global max

Table 2.—LASSO results.

Variable LASSO Variable LASSO Variable LASSO

Close 0.002241 Harvest 0 MDF 0

2 by 4 0.063729 Home building 0 OSB 0

BDFT 0 Home improvement 0 Plywood 0

CLT 0 Home renovation 0 Sawmill 0

Commodity �0.35150 Invest 0.007146 Softwood 0

DIY 0 Logging 0 Stock market 0

Fire 0 Logs 0 Timber 0

Forest products association 0 Lumber futures �8.96809 Wood 0

Forestry 0 Lumber price 0

Hardwood 0 Lumber yard 0
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pooling layer. The activation function is rectified linear unit.
The CNN model has epochs 1500, an optimizer of Adam,
and a loss function of mean squared error.

Evaluation of Models

To evaluate the performance of these models, the mean
squared error (MSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), and symmetric mean
absolute percentage error (SMAPE) were used as the criteria.
The measures are as follows:

MSE ¼ 1

N

XN

i¼1

ðbyi � yiÞ2 ð19Þ

MAE ¼ 1

N

XN

i¼1

jbyi � yij ð20Þ

MAPE ¼ 100%

N

XN

i¼1

byi � yi

yi

���� ���� ð21Þ

SMAPE ¼ 100%

N

XN

i¼1

jbyi � yij
ðjbyi j þ jyijÞ=2

ð22Þ

where N is the number of training set samples or test set
samples, yi is a real value at time t, and byi is the corresponding
predicted value.

Results and Discussion

In this study, a baseline model was established, based on
the naı̈ve forecasting method, to provide the required point
of comparison when evaluating all other models.1 Naı̈ve
forecasting is the method in which actual values in the last
period are simply taken as predicted values in this period.
In the baseline model, the opening price at the previous
time step t � 1 was used to be the predicted value at the
time step t.2

Figure 2.—Google trends index after LASSO, United States, May 2011 to May 2021.

1 We have built up a multiple linear regression (MLR) model with
the open price at time t� 1 according to the recommendations. The
MSE, MAE, MAPE, and SMAPE of the MLR model are 2067.48,
30.65, 2.89, and 2.90 percent, respectively. Overall, the perfor-
mance is slightly better than the naı̈ve forecasting, but does not
differ substantially. Therefore, we decide to use the naı̈ve
forecasting model, the common baseline method in the machine
learning research field. This also follows the zero rule algorithm for
the baseline method (Choudhary and Gianey 2017).

2 Akaike information criterion (AIC), Bayesian information criterion
(BIC), and Hannan-Quinn information criterion (HQIC) were
employed to determine the lag order for the baseline model. Based
on the selection criterion of the three models, the Lag 1 was
selected because it has the smallest AIC, BIC, and HQIC values.
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The prediction results of different models of the test set
are shown in Figure 3, which contains 127 observations
from November 25, 2020, to May 28, 2021. All four
machine learning models and three deep learning models
showed strong predictive ability because the predicted
lumber prices are close to the actual prices.

Figure 3 shows that the random forest, XGBoost, CART,
ANN, RNN, and CNN models can capture the trends and
dynamics in the test set, while the SVM model fails to
identify the pattern in the highest price interval, which
makes the nowcasting less accurate. It should be noted that
the actual lumber price in the test set is much higher than
that in the training set. Most of the machine learning and
deep learning models can still capture the trends and
identify the pattern. This shows that the machine learning
and deep learning models have the ability to extract hidden
features among variables in high-dimensional and multivar-
iate data sets in a complex and dynamic environment
(Köksal et al. 2011, Wuest et al. 2016).

From the overall performance, the ANN model performs
better than other models. There is a large overlap between
predicted prices and actual prices, especially for the
prediction of an abnormal trend of rapid growth from
mid-March 2021 to early May 2021. Moreover, the ANN
model provides significantly better predictions than the
baseline model. Although the random forest, XGBoost,
CART, and RNN models are inferior to ANN, the predicted
prices of these models were highly consistent with the actual
observations. SVM and CNN models have the weakest
prediction effects among the machine learning and deep
learning models, respectively, although predicted prices of
these two models are also roughly close to the actual prices.
The SVM model overestimates the lumber price from mid-
March to early May significantly, and the CNN model
cannot capture the trend of rapid growth very well,
compared with the other two deep learning models. This
result might be explained by the fact that the CNN model

Figure 3.—Models fitting on test set.
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does not depend on any information from previous
observations to make a prediction (Selvin et al. 2017).

Figure 4 compares the average prediction performance
between machine learning models, deep learning models,
and the baseline model. Comparing the predictive perfor-
mance of all seven models shows that the ANN model
performs the best overall. The MSE, MAE, MAPE, and
SMAPE of the test set are the lowest among these models.
This may be explained by the good self-learning, self-
adapting, and self-organizing ability of the ANN model,
which can analyze the patterns and rules of observations
through training (Su et al. 2019b). The RNN model is the
second-best prediction performance model, which could be
attributed to the good ability to use information from
previous lags to predict the future values by RNN (Selvin et
al. 2017). XGBoost gives more accurate predictions than
other machine learning models, and it is also the third-best

model among all seven models. ANN, RNN, XGBoost,
random forest, CART, and CNN models provide more
accurate results than the baseline model. In addition, the
performance of the machine learning and deep learning
models are generally better than traditional time series
models. For example, Banaś and Utnik-Banaś (2021)
forecasted round wood prices from 2019 Q1 to 2020 Q4
in Poland using ARIMA, SARIMA, and SARIMAX models,
whose MAPE was 2.57, 2.20, and 1.75 percent on average,
respectively. All the models except for SVM in this study
have better performance than the ARIMA model. The ANN,
RNN, XGBoost, random forest, and CART models in this
study are better than the SARIMA model, and the ANN and
RNN are better than the SARIMAX model.

Figures 3 and 4 show that, compared with machine
learning models, deep learning models are, on average,
more capable of capturing the trends and providing more

Figure 4.—Models evaluation.
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accurate predictions. This may result from the better
overfitting reduce ability of deep learning models. This
can also be seen in Figure 4. The fitting performance of the
three deep learning models to the training set is worse than
that of the machine learning models.

Conclusions

This study describes a new approach for nowcasting the
lumber futures price using Google Trends index through
machine learning models (SVM, random forest, XGBoost,
and CART) and deep learning models (ANN, RNN, and
CNN). We show that deep learning models generally give
more accurate predictions than machine learning models.
Among the seven models, the ANN model provides the best
performance, followed by the RNN model. The comparison
with the baseline model shows that the random forest,
XGBoost, CART, ANN, RNN, and CNN models provide
more accurate predictions than the baseline model. Our
findings also imply that the Google Trends index, which
reflects the dynamic changes of the interest and attention
from the public, can provide enough information to be good
predictors in nowcasting lumber futures prices.

By using the prediction methods and Google Trends
index, investors can take appropriate measures to hedge
risks and make profits during premarket trading hours. The
high predictive power of this approach implies that the big
data models should be added to the toolbox of investors and
policymakers to predict other economic variables. One
probable criticism to these methods being applied to predict
the lumber futures price followed by appropriate actions is
that it might enhance the lumber futures market volatility
and further lead to the invalidation of the forecasting.
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trends in an emerging market. J. Forecast. 32(4):289–298.

Chen, Y., R. Fang, T. Liang, Z. Sha, S. Li, Y. Yi, W. Zhou, and H. Song.
2021. Stock price forecast based on CNN-BiLSTM-ECA Model.
Scientific Programming 2021:2446543.

Choi, H. and H. Varian. 2012. Predicting the present with Google Trends.

Economic Record 88:2–9.

Choubin, B., G. Zehtabian, A. Azareh, E. Rafiei-Sardooi, F. Sajedi-
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