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Abstract
Planning and scheduling wood lumber drying operations is a very difficult problem. The literature proposes different

methods aiming to minimize order lateness. They all make use of pre-established kiln loading patterns that are known to offer
good physical stability in the kiln and allow full kiln space utilization. Instead, we propose a mixed integer programming
(MIP) model, which can be used to generate loading patterns ‘‘on the fly.’’ This MIP model can be integrated into existing
kiln drying operation planning/scheduling systems in order to improve their solutions. We show how this integration can be
done by adapting a state of the art drying operations planning and scheduling methodology from the literature. We compare
the solutions obtained by this system using the predefined loading patterns versus the solutions it generates if it is connected
to our loading patterns generator MIP model. The study shows it is much better to dynamically create loading patterns than to
use predefined ones, as most North American sawmills do.

The problem of planning and scheduling softwood

lumber drying operations is very complex. Drying is carried

out in batches, each one containing only compatible

products that can be dried together. The batch should be

made so as to form a stack (rectangular prism) that is

geometrically stable and that fills the entire kiln. Because

kilns are huge, each batch contains many pieces and

contributes to simultaneously satisfy several orders of

finished products having different due dates.

Each batch is defined by a loading pattern that specifies

the enumeration and specific positioning of lumber

bundles in the kiln. Because each kiln can be loaded in

millions of different ways (Fig. 1 gives an example of a

batch/stack), most North American companies define a set

of standard loading patterns in advance that are known to

fill the kilns while providing good stack stability. These

patterns are mainly based on workers’ experience. The

task of the planner/scheduler is then to determine when

(and for which kiln) each pattern should be used (each

pattern can be used repeatedly over the planning horizon)

while minimizing order lateness.1 For this paper, order

lateness is defined as the volume not delivered on time
times the number of periods during which the back order
is present.

For most companies, this planning/scheduling is done
manually. A mixed integer programming (MIP) model has
already been presented for this problem (Gaudreault et al.
2011), but for instances of industrial size, the MIP model
rarely provided good solutions even after long computing
time. A constraint programming (CP) model, which
provides good solutions for very short computation times,
was also introduced in the same article. CP (Bartak 1999b)
has the advantage of permitting nonlinear constraints
(although this was not a required characteristic in our case).
It also allows the expert to tailor the optimization engine
based on its knowledge of the problem by selecting the
constraint propagation algorithms and the search strategy
(Bartak 1999b, Rossi et al. 2006).
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1 This is a combined planning and scheduling problem (Bartak
1999a), since we simultaneously perform process planning (loading
pattern decision) and scheduling (Gaudreault et al. 2011).
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We were approached by a company2 that sought to
determine whether allowing a greater number of kiln
loading patterns would increase the company’s perfor-
mance. The general idea was that with a larger number of
loading patterns, we would have more chance to plan/
schedule batches that best fit customers’ orders.

Rather than using a huge list of predefined loading
patterns, we decided to provide the system with the ability
to dynamically generate them ‘‘on the fly.’’ Our aim is not
to compare with actual or manual planning of the kilns.
Such comparison has been done in other studies (Gaudreault
et al. 2011). We will instead evaluate to what extent the use
of a larger number of kiln patterns could improve the
solutions obtained by automated scheduling tools.

The paper is organized as follows. We first present
preliminary concepts related to the planning and scheduling
of wood drying operations. In particular, we present an
existing CP solution methodology for the problem as we
later improve that approach. We then describe an MIP
model we propose in order to dynamically generate loading
patterns, and we show how this model can be embedded into
the global CP solution methodology. Finally, we present
experiments showing how this new model greatly improves
the quality of the solutions found (reducing order lateness).

Preliminary Concepts

Wood drying

Wood drying is a process that reduces the moisture
content of wood in order to meet industry standards. For
softwood lumber, this process can take several days. It is
done in batches of several bundles of lumber which are put
together in large kilns. The bundles of a given kiln load can
be of different lengths, but they must generally be of the
same species and of the same section (width and thickness),
thus requiring the same drying process. Kiln drying time
might be different if the green lumber is staying in the yard

for several weeks. In our study, the company policy was to
keep inventory low, and thus the time in the yard is not very
long. Hence the kiln drying time difference due to different
time laying in the yard is not taken into consideration by our
partner company. Maturana et al. (2010) give a good
description of the overall lumber production process.

On a single site, multiple kilns can be used in parallel,
each having its own dimensions, capacity, and drying
technologies. Individual kilns may have different drying
processes. Since the planning can be done at any time and
the drying times are relatively long (24 to 96 hours), it is
possible that during planning, some kilns are already drying
and, hence, are not available before a certain period.

Bundles to be dried are generally prepared on carriages
outside of the kilns. They are pushed on rails into the kiln
when they are ready and when the kiln becomes available.
The number of rails may vary per kiln. Also, on the same
rail, bundles can be stacked in different rows. The number
of bundles that can be stacked depends on the height of the
kiln and the height of the bundles. In our case study, bundles
to be dried come from different sawmills, and thus the
height of the bundles may vary. For stacking stability, we
have to implement a special constraint enforcing that all
bundles of a given row in a kiln must have the same height.

Lumber drying planning and scheduling

Short-term planning/scheduling of lumber drying opera-
tions consists of finding a plan showing how each kiln
should be used for the next 2 or 3 weeks. Thus, for each
kiln, the plan shows which drying process is to be applied,
when (start time and end time) and which products
compatible with the process are to enter the kiln at that
time. Figure 2 shows an example of a solution for the
planning of three kilns over a period of 2 weeks (28 periods
of 12 h). Each gray block specifies the drying process to be
used. It should also be specified for each operation how the
kiln must be loaded (in the figure, we show, as an example,
the detailed loading for only one of the operations). In fact,
for each load, the plan must indicate the number of bundles
of each species/dimension/length.

When the number of different products that can be dried
is large (most lumber dimensions at our partner company
can be available in lengths of 8, 10, 12, 14, and 16 in.),
enumerating the various possible product combinations to
form loading patterns is unthinkable. For this reason,
companies typically work with a small number of
predefined loading patterns (a few dozen). However, it
would be possible to dynamically build the kiln loading

Figure 1.—A kiln loading pattern showing rails, rows, and
bundles of different products.

Figure 2.—Production plan for three kilns. Each operation
identifies the selected drying process (gray) as well as a loading
pattern indicating which specific compatible products will be
dried.

2 Resolute Forest Products is the largest softwood lumber producer
in Eastern Canada. They operate about 50 kilns in Quebec and
Ontario (Canada).
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patterns at the time of planning. This is what we propose in
the ‘‘Using a MIP model to define an optimal loading
pattern’’ section.

For the detailed planning of softwood drying operations,
Gaudreault et al. (2010) formally describe the problem and
show a heuristic for solving the problem when preset
loading patterns are provided. A heuristic for the multi-
period planning of all the kilns has been proposed (Fig. 3).

In Gaudreault et al. (2011), the same problem is modeled
as a MIP problem as well as a CP model. The MIP model
does not provide good quality solutions, even after several
hours of computing time. The CP model finds very good
solutions in a very short time, but optimal solutions have not
been obtained for industrial-sized instances.

Interestingly, the search strategy employed by the CP
model can be seen as a generalization of the heuristic just
presented above (Fig. 3). At step 2, rather than just choosing
the best process/loading pattern as proposed by the heuristic
(i.e., the one reducing the objective function by the greatest
value), we sort all possible processes/patterns in descending
order of preference. A loading pattern is eligible (possible)
if all of its components are available in inventory (all the
quantities for each different product type are available) at
the time it is considered for scheduling.

The combination of all these possibilities defines a
complete tree (Fig. 4 shows a simple case). We reach a
leaf when all the drying kilns have been scheduled over the
planning horizon. This corresponds to a solution. In Figure
4, reaching leaf node 12 corresponds to the following
solution (through nodes 1, 8, 9, 12): at time t¼ 0, schedule
kiln 1 using loading pattern R3. At time t¼ 0, schedule kiln
2 using loading pattern R5. At time t ¼ 8, schedule kiln 2
using loading pattern R5. At time t ¼ 10, schedule kiln 1
(note: the last loading pattern is not depicted in Fig. 4). At
that point, if computation time is still available, we can
resume search in the hope of finding better solutions. To do
so, we can step back to the previous visited node (this
process is called ‘‘backtracking,’’ and it is precisely what is
done in classical ‘‘depth-first search’’).

Exploring the complete tree would ensure finding the
optimal solution to the problem, but it is such a large tree
that it is computationally impossible for real industrial
problems.

After reaching a leaf, instead of systematically back-
tracking to the previous visited node, we could also
backjump to any node that has process/loading patterns
still unexplored.

Actually, the search strategy employed to decide in what
order the nodes must be visited during backtracking has an
important impact on the performance of the algorithm.
Gaudreault et al. (2011) have shown that the search strategy
called limited discrepancy search (LDS; Harvey and
Ginsberg, 1995) is much more efficient than basic strategies
(e.g., depth-first search)3 for this problem.

Other authors propose partial solutions to this problem.
Gascon et al. (1998) worked on the development of an
integrated system for the management of drying hardwood.
In their case, loading pattern issues do not apply because

there are no different bundle sizes and there are few
different products (species). Aggarwal et al. (1992) also
present a decision support system for planning kiln
operations for a plant producing hardwood furniture. Their
planning model makes wood supply/drying decisions at
minimum cost for a furniture production plan. The problem
of loading patterns is not present in the case that they
studied. Cheng Huang et al. (1998) worked on a problem
similar to the one of Aggarwal et al. Their heuristic
considers lumber procurement and drying at the same time.
As seen in many other papers, kiln charge is tested against
global kiln capacity, and no physical validation is made to
ensure bundle stacking is feasible and can physically enter
the kiln. Arman et al. (2001) also have developed a kiln
drying planning model for hardwood used in furniture
production. The authors mention that due to the nondeter-
ministic polynomial (NP)-completeness of the problem, the
use of an MIP is inefficient. They developed a heuristic for
this problem, but it does not look at the operational
feasibility of kiln loading.

The method of Gaudreault et al. (2011) still seems to be
state of the art, since it has been chosen again this year by a
large integrated company from Quebec, which is imple-
menting it (with our support) for a group of five sawmills.

Using a MIP Model to Define an Optimal
Loading Pattern

The approaches used to solve the kiln drying operation
scheduling problem, whether manual planning, greedy
heuristic (Gaudreault et al. 2010), the MIP or CP model
(Gaudreault et al. 2011), all share a common subproblem
consisting in choosing which loading pattern (from a list of
preset patterns) should be used to fill a specific kiln at a
specific time. As we mentioned, most North American
companies define a set of standard loading patterns in
advance, which are known to fill the kilns while providing
good stack stability, and select among them.

In this section, we propose the use of a MIP model that
allows dynamically generating a loading pattern/optimal
stacking. These loading patterns generated ‘‘on the fly’’ can
be used in place of the predefined ones in any of the
previously mentioned approaches to global kiln planning
and scheduling.

Literature review—creating optimal loading
pattern

The formulation of the problem can, in some ways, be
related to a 2D strip packing problem (2DSP) with tardiness
objective function and also with spatial scheduling prob-
lems. We reviewed the approaches presented by Bekrar and
Kacem (2009), Boschetti and Montaletti (2010), Côté et al.
(2013), and Kenmochi et al. (2009). Despite the resem-
blance, the approaches to the 2DSP do not well apply to our
problem for the following reasons: (1) 2DSP do not enforce

Figure 3.—Greedy heuristic to solve the kiln drying operation
scheduling problem, from Gaudreault et al. (2010).

3 Best-first search does not work because the computation of the
bounds in the nodes is very poor, as a result of the highly
combinatorial structure of the problem. We believe this also
explains why the MIP does not perform well for these types of
problems.
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restriction on how the stacking is done, that is, elements of
any size can be stacked on top of each other; (2) Although
empty spaces are normally minimized in the 2DSP problem,
solutions with holes are valid, whereas this is not acceptable
in kiln loading patterns. For the spatial scheduling problem,
we reviewed the approaches given by Garcia and Rabadi
(2013, 2016). Even though spatial scheduling problems have
some commonalities to our problem, there is quite a
difference in the problem definition: (1) in spatial
scheduling, no jobs have to be scheduled at the same time;
(2) in making kiln loading patterns, choosing a product for a
given location imposes a constraint on the candidate
products that can be chosen for the position above/below
and on the same row: products on the same row must have
the same height; products stacked must be of same length;
(3) all products to dry at the same time within a kiln must
require the same drying process (drying time and drying
parameters); and (4) multiple kilns must be scheduled at the
same time.

Generating a kiln loading pattern has some resemblances
to the problem of container loading. For these problems,
Bischoff and Ratcliff (1995) gave a review of many
practical requirements, which are not always well consid-
ered in the solution methodologies. According to them,
these problems may be divided into two categories: on the
one hand, cases where the whole of a given consignment of
goods is loaded, and on the other hand, cases where it is
possible to leave some of the cargo behind. Our problem
clearly falls into the category where we can leave some of
the cargo behind, since we have to select the bundles among
the planned available inventory. Among the different
constraints for these problems, loading priorities, although
important, are hardly ever explicitly considered in container
loading algorithms (Bortfeldt and Wäscher 2013).

When boxes or bundles are to be stacked, stability is of
great importance and beyond container space utilization,
constraints related to stability are in fact often considered to
be one of the most important issues. Despite that, Bortfeldt
and Wäscher (2013) found that these concerns are often not
considered explicitly, since authors argue that stability is a
consequence of load compactness when high container
space utilization can be guaranteed, which is typically true
for problems where only a subset of the items can be
packed.

Allocation constraints (sometimes referred to as connec-
tivity constraints or separation constraints) demand that
certain items or classes of items not be loaded into the same
container. Such constraints exists in kiln drying softwood
lumber, since only the bundles requiring the same drying
process can go together in the kiln at the same time. Of the
163 papers reviewed by Bortfeldt and Wäscher (2013), 8
percent of them consider these types of constraints, much of
them as soft constraints (in our case, it needs to be a hard
constraint).

Container loading problems typically involve many more
constraints, which may involve box orientation, load
bearing strength of items, multidrop situations, container
weight limit, weight distribution within a container, loading
priorities, relative positioning constraints, and loading
complexity (Bischoff and Ratcliff 1995, Bortfeldt and
Wäscher 2013). To tackle these problems with real-life
applicability, many different approaches have been used. As
mentioned by Sorensen et al. (2016) and Junqueira et al.
(2013), these problems are NP-hard, and for real-life sized
problems, approaches other than optimization should be
used (Dereli and Sena Das 2010, Gonzalez et al. 2013, Yu et
al. 2014, Zeineldin and Morsy 2015).

One can see that despite the appearance of resemblance
between the creations of kiln loading patterns and
container loading problems, there are a lot of practical
requirements specific to each application. Since many of
the constraints pertaining to container loading problems
are not present in our context, we developed a MIP model,
which is easy to solve for the dynamic generation of kiln
loading patterns.

Proposed model

For a particular kiln that is empty at a specific time, the
MIP model we developed identifies: (1) which drying
process will be used (this defined compatible products); (2)
for each rail, how many bundles of different lengths will be
placed on each row; (3) the height of the bundles in each
row of each rail of the kiln; and (4) which specific product
constitutes each bundle. The model takes into account the
physical dimensions of the kiln, the inventory that will be
available to be dried at the time of starting the drying
process, and the demand for the different finished products
(volume required in each period, per product). This might be
a combination of firm orders, projected sales and production

Figure 4.—Example of a search tree representing the solution space for the kiln drying planning problem. Each node corresponds to
a choice point where you have to choose a drying process/loading pattern.
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targets, depending on the company’s objective for this
planning. The objective of the model is to configure a valid
stacking which minimizes order lateness. Figure 1 shows a
valid loading pattern for a kiln with two rails. The stacking
is independent from one rail to the others. Bundles within a
row must be of the same height, and only bundles of same
length can be stacked on top of each other.

The MIP solution does not specify the exact location of
each bundle selected to make the loading. Decision variable
specifies the number of bundles of each product to put in
each row on each rail. With that information, it is up to the
operator to decide where on the row to put the products of
different length, as long as only bundles of the same length
can be stacked on top of each other. A constraint ensures
there is the same amount of lumber of a given length in each
row of a rail, guaranteeing a feasible stacking.

For the company involved in this project, a high
proportion of their lumber production is made to order,
and its objective is thus to reduce lateness. For other
companies, the objective can be linked to some production
target. In both cases, this is modeled as a demand that is
characterized by a volume of a specific product with a
required date.

We recall that for this paper, lateness is defined as the
volume not delivered on time times the number of periods
during which the back order is present. This computation is
done for all of the products having demand over the
planning horizon T. Since the planning is not done globally
in a single mathematical model, the heuristic aims at
reducing the lateness by favoring, while planning for a given
kiln, the drying of the products which, if not dried
immediately, would cause the most lateness. We thus try
to maximize the reduction of the lateness by drying the right
products in time.

Let T be the planning horizon, and let wv,t be the volume
of product v required at time t. Let ds be the kiln dry time
when the drying process s is used. In drying a product
(which may generate, after planing, a final product v
required at time t), we reduce the lateness by Uv,t,s 3 min
{T � t, T � ds}, where Uv,t,s is the decision variable that
represents the volume of the final product v required at
time t that will be satisfied by this solution for the kiln
loading according to drying process s. The objective
function minimizing the lateness can thus be expressed as
follows:

maximize
X
v2V

XT

t¼1

X
s2S

Uv;t;smin T � t; T � dsf g

Sets, parameters, and decision variables

Sets

L Set of bundles length l
P Set of green lumber products p
Pl Set of green lumber products p that are packed in

bundles of length l. Pl � P
V Set of finished lumber products v
H Set of bundles height h. This set also includes the

height h ¼ 0
S Set of drying processes s (compatible with the kiln

being planned)
Sp Set of drying processes s which can be used to dry

product p 2 P. Sp � S

Parameters

W Large number (we use total volume of products in
inventory) (unit: pmp)

a Maximum number of stacking rows in the kiln
max h Maximum stacking height in the kiln (unit: inches)
n Number of rails for the kiln
nmax Maximum use of kiln length (unit: feet)
nmin Minimum use of kiln length (unit: feet)
ip Volume of product p available for drying (when kiln

is scheduled to start its drying process) (unit: pmp)
up Volume of one bundle of product p (unit: pmp)
hp Height of one bundle of product p (unit: inches)
wv,t Volume of final product v required for period t (unit:

pmp)
ds Kiln dry time, in number of periods, when process s

is used. (unit: number of periods)
op,v Volume of finished product v obtained from the

planing of product p after kiln drying. (unit: pmp)
T Planning horizon, in number of periods

Decision variables

Rs ¼ 1if process s is used for the kiln, 0 otherwise
(binary)

Nl,r Number of bundles of length l (in feet) put on any
one row of rail r (positive integer)

Xp,r,g Volume of product p assigned to rail r in row g
(positive real, unit: pmp)

Qp,r,g Number of bundles of product p on rail r in row g
(positive integer)

Ir,h,g ¼ 1 if height h is chosen for the bundles of row g for
rail r, 0 otherwise (binary)

Gr,g ¼ 1 if row g on rail r is used, 0 otherwise (binary)
Er,g,l Slack variable allowing to consider empty rows

(positive real)
Jv Volume of final product v that will be obtained from

the kiln drying plan (positive real, unit: pmp)
Uv,t,s Satisfied volume of product v required at time t from

production of finished products done using drying
process s (positive real, unit:pmp)

Constraints

Constraints only allow us to dry at the same time those
products that call for the same drying process. Other
constraints also require that all bundles on the same row
have the same height and that each row of the same rail has
the same number of bundles of each length. This ensures
stability of the stacking. Each kiln also has specific
dimensions, so the length of the bundles put together in a
row should not exceed these dimensions. Furthermore, in
order to maximize the use of space, the sum of the lengths of
bundles of one row must be greater than a specified
minimum length. Below are the constraint details.

We select only one drying process s for the kiln.
X
s2S

Rs ¼ 1 ð1Þ

We fill the kiln such that the total length of all bundles is
within acceptable range. Hence, for each rail, the sum of
bundles length on a row must be between nmin and nmax.

nmin �
X
l2L

ðl � Nl;rÞ � nmax �r 2 1::nf g ð2Þ
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Only products compatible with the selected drying
process can be dried.

Xp;r;g � W
X
s2Sp

Rs �r 2 1::nf g; g 2 1::af g; p 2 P ð3Þ

We cannot use more products than what are available in
inventory.

Xn

r¼1

Xa

g¼1

Xp;r;g � ip �p 2 P ð4Þ

The MIP model allows for a maximum number of rows in
the kiln (parameter a), but according to the height of the
selected bundles to be dried, it is possible that not that many
rows can be used to fill the kiln up to the ceiling. A slack
variable (Er,g,l) is used in Equation(6) to ensure constraint
satisfaction when not all rows are used. Equation (5) makes
sure this slack variable is null for rows that are used.

Er;g;l � Wð1� Gr;gÞ �r 2 1::nf g; g 2 1::af g; l 2 L ð5Þ
For any given row, bundle selection must be such that it

complies with the chosen length assortments for the rail
(Nl,r): there must be the same number of bundles of each
length in every row of the rail.

X
p2Pl

Xp;r;g

up

0
@

1
Aþ Er;g;l ¼ Nl;r �r 2 1::nf g; g 2 1::af g; l 2 L

ð6Þ
Equation (7) computes the integer number of bundles of

each product used in the loading plan.

Qp;r;g ¼
Xp;r;g

up

�p 2 P; r 2 1::nf g; g 2 1::af g ð7Þ

All the bundles on the same row of a rail must have the
same height. Equation (8) guarantees that only one height is
chosen per row per rail.

X
h2H

Ir;h;g ¼ 1 �r 2 1::nf g; g 2 1::af g ð8Þ

All products on a row must be of the selected height.

Xp;r;g � WIr;hp;g �p 2 P; r 2 1::nf g; g 2 1::af g ð9Þ
A row is set as not being used if the selected height for

that row is null (Eq. 10). It is assumed that bundle height is
�1 for any bundles in the system. Equation(11) assures that
height of unused row is zero.

X
h2H

ðh � Ir;h;gÞ � Gr;g �r 2 1::nf g; g 2 1::af g ð10Þ

X
h2H

ðh � Ir;h;gÞ � WGr;g �r 2 1::nf g; g 2 1::af g ð11Þ

For each rail, in the stacking of the bundles, one cannot
exceed the maximum stack height given by max h.

Xa

g¼1

X
h2H

ðh � Ir;h;gÞ � max h �r 2 1::nf g ð12Þ

The decision variable Jv is the volume of finished product
v that is obtained from the drying plan. Since the planing
process is like a disassembly (different finished products are
produced at the same time from a given bundle), op,v is a
parameter that gives the volume of finished product v
obtained from the planing of one unit of volume of product
p dried.

Jv ¼
Xn

r¼1

Xa

g¼1

X
p2P

Xp;r;gop;v �v 2 V ð13Þ

Let the decision variable Uv,t,s be the portion of the final
product v required at time t satisfied from the drying plan
using drying process s, and let wv,t be the volume of final
product v required at time t. Equation (14) states that we
cannot satisfy more than the product required quantity, and
Equation (15) that we cannot use more than the produced
quantity to satisfy the final product requirement. Equation
(16) makes sure no final product requirement is satisfied
from a drying process that is not selected.

X
s2S

Uv;t;s � wv;t �v 2 V; t 2 1::Tf g ð14Þ

XT

t¼1

X
s2S

Uv;t;s � Jv �v 2 V ð15Þ

Uv;t;s � WRs �s 2 S; v 2 V; t 2 1::Tf g ð16Þ

Integrating the MIP model into the global
solution procedure

The sections ‘‘Proposed model,’’ ‘‘Sets, parameters, and
decision variables,’’ and ‘‘Constraints’’ describe the MIP
model used to generate an optimal loading pattern for an
available kiln giving current material availability and
unsatisfied demand. The model will select the lumber to
dry in order to maximize the reduction of order lateness. It is
straightforward to change step 2 of the greedy heuristic (Fig.
3) in order for it to use the process/loading pattern generated
by the MIP instead of choosing the best process/loading
pattern from a predetermined list.

To integrate the MIP into the procedure involving the
search tree (see the ‘‘Lumber drying planning and
scheduling’’ section) we solve the MIP each time we enter
a node, and this generates the loading pattern (according to a
drying process) and a first branching from that node. At a
later time, if backtracking is done up to this node, the MIP is
run again to generate another loading pattern (and another
branching). Since the algorithm remembers the previously
selected drying processes, we remove from the input data
the ability of the MIP to select any of the previously selected
drying processes. This ensures a different solution will
emerge from the new branching.

When integrating our MIP model within the constrained
programming model proposed by Gaudreault et al. (2011),
each branching from one level to the next below is done
using the MIP which selects a process (A1, A2, A3, A4, and
A5 in Fig. 5) and creates a new loading pattern using that
process.

Looking at Figure 5, say we are at node 3a and we have
determined the next available kiln is kiln No. 2 at time 6.
We run the MIP model with the set of drying processes S¼
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{A2, A3, A5, . . .}. At that point, the MIP determines that the
best process is A2 (as shown in Fig. 5, leftmost branch) and
the model also has generated the loading pattern (selecting
the right products for the unsatisfied demand). Having
selected process A2, we are now at node 4a. Let’s say we
want to explore an alternative solution. We have to
backtrack in the tree and make a different choice with
regard to drying process/loading pattern for the node being
considered. If we backtrack by only one level, we are at
node 3a and need to run the MIP again to determine the best
drying process/loading pattern combination for that level.
This time, we need to remove process A2 from the set S of
drying processes, since this is the one that was chosen
previously. The model would then run with S ¼ {A3, A5,
. . .}, ensuring a different [partial] solution.

Of course, a search strategy must be defined in order to
select the node to backtrack to each time a solution is found.
We propose the use of the LDS strategy, since it is the one
that gave the best results in Gaudreault et al. (2011).

Evaluation Using Industrial Data

We have shown that all effective approaches to the
problem have a subproblem that consists of choosing a
loading pattern. In this section, we use these different
methods, but we replace the step of selecting the loading
pattern from a predefined set, by a step which dynamically
builds a loading pattern using the MIP model from the
‘‘Using a MIP model to define an optimal loading pattern’’
section.

The different approaches we compare are (1) the greedy
heuristic from Gaudreault et al. (2010) using a set of
predefined patterns (hereafter called ‘‘Heuristic-Fixed’’), (2)
the CP model solved using an LDS search strategy, as in
Gaudreault et al. (2011) (‘‘LDS-Fixed’’), (3) the greedy
heuristic modified to dynamically select the loading patterns
at each step (‘‘Heuristic-Dynamic’’), and (4) search space
alternatives with LDS while creating loading patterns
dynamically (‘‘LDS-Dynamic’’).

The models were tested with real data from a represen-
tative average-sized sawmill in Quebec (Canada) using data
from four different periods. We use the same cases as in
Gaudreault et al. (2011). In all four cases, 40 different
products types can be dried in either of the two identical
kilns. Although this number of products may seem small, it
is typical and representative of what we find at the drying

stage in the industry. We look for a plan that will minimize
lateness over a horizon of 60 periods of 12 hours. For
methods with predefined loading patterns, 150 preset
loading patterns are available to meet between 52 and 77
orders. To solve the sub problems of constructing loading
patterns, the solver used is CPLEX (version 12.6) with a gap
of 0 percent. The experimentations were run on a 64-bit
operating system (Windows Server 2008 R2) with 6 GB of
RAM and processor Intel Xeon X5675 at 3.07 GHz.

Figure 6 compares the results for the different methods
according to computing time. Recall that the heuristic
solutions (method 1 and 3) correspond to the first solution
found by the corresponding LDS search (methods 2 and 4).
Therefore, in the following charts, the first value (left) is
also the value of the heuristic.

In each case, the first solution is found in less than 30
seconds. We gave 300 minutes for the LDS search, and
graphs show the improvement of the solution (reduction of
the objective function) over time. The graph in Figure 6
shows that the majority of the gain with the LDS method is
obtained in the first few minutes of computation.

Table 1 compares the quality of the solutions obtained
after 300 minutes. The percentage is the lateness reduction
compared with the reference method (Heuristic-Fixed, i.e.,
with pre-established loading patterns). Comparing the two
methods with predefined loading patterns (Heuristic-Fixed
vs. LDS-Fixed) shows a result consistent with those
obtained in Gaudreault et al. (2010). The search method
with LDS improves the solution by 5 to 10 percent in cases
1, 2, and 4 and by more than 45 percent in case 3. If we look
at the impact of generating patterns dynamically, we notice
that the heuristic (Heuristic-Dynamic) is more effective than
when it uses the predefined patterns (it allows reducing
lateness by 43% on average), and it beats LDS-Fixed
(reducing lateness by 33% on average) even if the latter took
5 hours to compute. This clearly shows the positive
industrial impact associated with the dynamic creation of
loading patterns. The gains are related to the fact that our
model can create new loading patterns that help to further
reduce lateness. The loading patterns generated by the
model are focused on the need to minimize lateness, and
more opportunities are explored than when using predefined
loading patterns.

Using the LDS strategy to explore alternative solutions
(LDS-Dynamic) we get the best solutions found to date for

Figure 5.—Search tree dynamically constructed using the MIP model.
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this problem. This approach allows an average gain of 51
percent compared with the heuristic exploiting predeter-
mined fixed patterns, and 8 percent compared with the
heuristic using dynamic loading patterns.

We should mention that the LDS-Dynamic method
requires much more time to explore each node than the
LDS-Fixed method. Hence, this method explored an average
of 14,000 nodes over 5 hours, while the LDS-Fixed method
explored 4,000,000 nodes in the same period of time.
However, nodes from the LDS-Fixed are not the same as the
ones from the LDS-Dynamic. Indeed, at each node of the
LDS-Dynamic tree, the MIP creates the best loading pattern
among the vast quantity of possible ones, while, in a given
node of the LDS-Fixed tree, only one loading pattern is
evaluated.

Validation Using Toy Problems

In the ‘‘Evaluation using industrial data’’ section, we
compared different methods to solve the kiln drying
operation scheduling problem. Although the LDS-Dynamic
method gives the best known results, it is not possible, with
actual large industrial instances, to determine how far the
LDS-Dynamic method is from the optimality. To get a more
precise idea, we have derived smaller toy problems from the

industrial ones (the original industrial instances had 60
periods, while our reduced version has 29 periods), and we
developed an MIP model to solve the whole problem as a
single step (we call it Big MIP in Fig. 7). Having this MIP
solve the whole problem (although it is intractable for the
real industrial instances) results in a lower bound on the
solution, which we use for comparison purposes.

Most of the constraints in the Big MIP are the same than
the ones defined in the ‘‘Using a MIP model to define an
optimal loading pattern’’ section. The main difference
resides in the fact that the MIP defined in the ‘‘Using a
MIP model to define an optimal loading pattern’’ section
makes one loading plan for one kiln at one point in time,
while the Big MIP makes multiple loading plans for each
kiln in time. This can be achieved by adding an index for the
loading to most of the decision variables. Moreover, new
decision variables define the time at which a loading starts
and the time at which a loading ends. Also, binary variables
indicate whether or not a given loading starts/ends at a given
period on a given kiln. New constraints are set so that no
loadings overlap in time on any given kiln.

Figure 7 shows the gap evolution over time for the Big
MIP and for the LDS-Dynamic method. Both methods were
executed for 5 hours. The LDS-Dynamic method rapidly

Figure 6.—Order lateness according to computation time for the various methods. The first point on the left of each curve matches
the solution value that would be obtained with the corresponding heuristics (fixed and dynamic).

Table 1.—Value of the objective function (minimization) for the greedy heuristics versus LDS tree search methods, with (fixed) or
without (dynamic) preset loading patterns.

Method Case 1 Case 2 Case 3 Case 4 Average

(1) Heuristic-Fixed 14,455,348 2,101,861 1,729,067 7,489,769

(2) LDS-Fixed 13,741,655 � 5% 2,049,925 � 2% 956,644 �45% 6,766,709 �10% �15%

(3) Heuristic-Dynamic 12,678,085 �12% 1,100,762 �48% 544,041 �69% 4,367,626 �42% �43%

(4) LDS-Dynamic 11,830,206 �18% 832,171 �60% 346,896 �80% 4,074,191 �46% �51%
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finds good solutions and has difficulties improving the
solution after 30 minutes of running time. The gap of the
solutions found with our heuristic range between 0.5 and 29
percent (average 17%). For the Big MIP solved using
CPLEX, the range for the gap is between 0 and 22 percent
(average 14%).

We can see from these results that it takes more time for
the Big MIP to converge. Although after 5 hours Big MIP
obtained better solutions on average, the results are very
close for three out of the four cases. We conclude that even
though the solutions obtained are not optimal, we could not
do much better in a reasonable amount of time using an
exact algorithm solution. We have to mention again Big
MIP cannot be used on real-sized instances.

Conclusion

Planning and scheduling of lumber kiln drying operations
is a difficult problem that cannot be solved to optimality in a
reasonable time. Various heuristics have been presented in
the literature, but they either have to use predefined loading
patterns or they apply to hardwood and do not address the
loading patterns selection. With this project, we wanted to
improve automated scheduling methods that apply to
softwood lumber drying operations. The method proposed
in this article allows the creation of new loading patterns
dynamically when planning.

We have shown how the proposed MIP model that
generates loading patterns can be integrated into any
existing planning and scheduling methodology for kiln
drying of softwood lumber. In this case, it was integrated to

both a greedy heuristic and to an existing CP approach using
an LDS search. We showed that the use of dynamic loading
patterns in place of standard existing loading patterns is
more effective when considering the objective of minimiz-
ing order tardiness. Using four real industrial cases, we
computed an average improvement of 40 percent of order
lateness when compared with a method using standard
loading patterns as our industrial partners currently use, and
compared with the same approaches using dynamic
generation of loading patterns.

Manufacturers with whom we conducted our project
validated that our loading patterns and kiln plans obtained
for drying lumber are valid. For the personnel in charge of
planning the kiln loading operations, the new approach is
particularly useful when green lumber inventory is low, and
it is difficult to fill up kilns using existing standard loading
patterns. With short computation time, our method allows
manufacturers to quickly make new plans according to
variation in actual drying times, expected availability of
green lumber, or urgency of new orders.

We have improved the quality of the solutions for a
problem that was intractable by replacing it by an even more
complex problem to model and solve. Moreover, from an
industrial point of view, we have shown the forest products
sector that planning kiln drying operations using a
predefined set of loading patterns limits the quality of the
solutions that can be obtained.

Our partner company has integrated our optimization
methodology in its operation scheduling suite and is now
using this tool to plan about 50 kilns in the provinces of

Figure 7.—Evolution of the gap for four toys problems using an exact approach (Big MIP model with CPLEX) versus the LDS-
Dynamic approach.
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Quebec and Ontario in Canada. Their planning is based on
current and planned short-term upcoming green lumber
inventory level. One assumption of any kiln drying
scheduling tool is that green lumber inventory is known.
By the nature of the sawing process, a lot of uncertainty is
involved, and having a good knowledge of available
inventory for the coming weeks is quite difficult. This is
why rescheduling of drying operations will have to be done
on a regular basis, at least once a week.

Considering a specific objective (such as minimizing
order lateness), having a computer-generated schedule with
this aim will in most circumstances beat any human
schedule. But in the end, this is not necessarily what makes
a kiln drying scheduling tool strong and interesting for a
company to use. Given the experience we have with our
partner, we see three key elements for the adoption of such a
tool by the industry: (1) ability to automatically connect to
up-to-date data (inventory/orders/current planning); (2)
ability to reschedule as needed with a few minutes
optimization time; (3) ability to use or generate loading
patterns that are easy and realistic for the operators. So
although we might be closer to optimality considering order
lateness minimization in only using dynamic loading
patterns, the companies that implement this solution
preferred to first use their standard loading patterns and
only fall back to dynamic loading pattern when no standard
pattern can be used given the planned available inventory at
a specific time in the schedule.
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