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Abstract
The defect rate of initially produced block bamboo (Bambusoideae) parts is .20 percent. Sorting out these defective parts

manually is a highly time-consuming and tedious process. An intelligent sorting system was developed based on machine
vision using a Radial Basis Function (RBF) neural network learning algorithm in this study. First, a high-speed charge-
coupled device camera was used to obtain a series of images of perfect and defective block bamboo parts. Next, the RBF
neural-network learning algorithm was applied to obtain defect characteristics and to locate defective parts moving forward
on a conveyor belt. An array of air jets was designed to force defective parts off the belt. Experimental results showed that the
average defective part removal rate of the proposed system was 91.7 percent.

Bamboo (Bambusoideae) is commonly distributed
throughout the Asia–Pacific region, Americas, and Africa,
as shown in Figure 1. In Asia, bamboo plants are mainly
distributed in China, India, and other developing countries.
Bamboo mats are very popular consumer items during the
summer months. Rectangle bamboo parts are the primary
component of the bamboo mat. The defect rate of initially
produced rectangle bamboo parts is .20 percent. Defective
parts are sorted out manually in existing production systems,
which is time-consuming and tedious. Additionally, as labor
costs increase, it is also increasingly necessary to develop a
rapid and accurate sorting method to maintain profitability
in today’s highly competitive manufacturing market.

There have been many previous studies on machine-
vision-based sorting methods. For example, Sofu et al.
(2016) designed an automatic machine vision system to sort
183 apple samples at three different conveyor belt speeds
with 73 percent to 96 percent accuracy. Ohali (2011) created
a neural network, computer-vision-based system to sort date
fruit into three grades with accuracy of 80 percent. Moallem
et al. (2017) proposed a computer-vision-based support
vector machine (SVM) classifier to grade golden delicious
apples at a recognition rate of 92.5 percent and 89.2 percent
for two categories (healthy and defected) and three quality
categories (first rank, second rank, and rejected), among 120
apple images, respectively. Arakeri and Lakshmana (2016)
built a 96.47 percent accurate automatic tomato-grading
system based on computer vision. Zhang et al. (2014)
proposed a hybrid fruit classification method based on the
fitness scale chaos artificial bee algorithm (FSCABC) and
feed-forward neural network (FNN); the system showed

classification accuracy of 89.1 percent. Liu et al. (2019)
identified immature and mature pomelo fruits on trees by
fitting an elliptic model in the Cr–Cb color space; the
recognition accuracy was 93.5 percent. Baltazar et al. (2008)
applied data fusion to classify fresh, intact tomatoes based
on their respective levels of ripeness.

There have been many other valuable contributions to the
literature. Baigvand et al. (2015) developed a fig classifi-
cation system based on machine vision, which demonstrated
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95.2 percent accuracy and 90 kg/h speed. Chen et al. (2019)
developed a machine vision system to detect broken, chalky,
damaged, or spotted defective rice seeds. Xu and Zhao
(2010) classified the size, shape, and color of strawberries
via k-means algorithm with size error ,5 percent and color
and shape accuracy of 88.8 percent and 90 percent,
respectively. Yu et al. (2009) designed a machine-vision-
based capacitor appearance defect detection system, which
was found to be highly efficient and accurate. Gu et al.
(2019) used a back propagation neural network to classify
mesh defects. Li et al. (2016) introduced a fast-normalized
cross correlation (FNCC) –based machine vision algorithm
for detecting and counting immature green citrus fruits on
outdoor color images; 84.4 percent of the fruits were
successfully detected in 59 validation images. Subramanian
et al. (2006) built an autonomous guidance system using
machine vision and laser radar, which achieved successful
guidance within 2.5–2.8 cm while travelling at 3.1 m/
second. Hannan et al. (2009) introduced a machine vision
algorithm to identify oranges with 90 percent detection
accuracy and a 4 percent false-positive rate. Jabo (2011)
uses ‘Adaboost’ kernel methodology in wood defect
detection and classification. Choi et al. (2015) developed a
machine vision system to detect fruit that had been dropped
on the ground, which demonstrated 83 percent to 88 percent
accuracy. Shin et al. (2012 a, b) developed a computer
vision system for inspecting the quantity and size distribu-
tion of fruits on conveyor belts.

The production process of bamboo mat includes the
following steps: (1) Material quality inspection and cutting;
(2) Sifting; (3) Shaping and drilling hole; (4) Heating; (5)

Polish; (6) Sorting; and (7) Assembling (Fig. 2). Band
scratches and dents on the upper surface, which will affect
the final appearance of bamboo cushions and hurt users, are
the main naturally caused defects on the outer surface of
bamboo materials. Other defects, such as cracks and
irregular shape in the lower surface and the sides, will be
checked in the material quality inspection and cutting step.
In the sorting step, those bamboo parts that have band
scratches and dents on the upper surface must be removed
before assembly. In order to achieve automatic sorting of
bamboo parts, a machine-vision-based sorting system was
established in this study. The proposed system works based
on an image segmentation algorithm, which is an entirely
novel approach to the best of the authors’ knowledge.

Methods and Materials

Hardware

The hardware of the sorting system is mainly composed
of a detection unit, transmission unit, sorting unit, air supply
system, and control system (Fig. 3). The detection unit
includes a light source, a light source control card, a lighting
box, and a charge-coupled device (CCD) camera. The
transmission unit is a black conveyer belt mounted on a
stainless table. The control system includes an industrial
computer, a computer power supply, and an output
expansion module that controls the conveyor belt velocity.
Figure 4 shows a schematic diagram of the sorting unit,
which contains six air jets, six jet valves, an air compressor,
a 24-V power supply, and a solenoid valve control card. The

Figure 2.—The production process of the bamboo mat.

Figure 1.—Bamboo and distribution map of bamboo.
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air jet is connected to a solenoid valve, which is connected
to the air compressor through a duct.

Workflow

The workflow of the proposed sorting procedure is shown
in Figure 5. At the beginning of the sorting process, the
electric source of the air compressor is switched on to
provide 0.5 mpa of compressed air. The light source is
switched on and the resolution of the CCD camera is
adjusted to obtain clear images. The belt is then started, and
bamboo parts are placed on the conveyor and moved
forward. As the bamboo parts enter the CCD camera’s
capturing field, the camera captures and transmits images to
the computer for processing. A software system analyzes the
image to locate any defective parts. The defective parts are
transported to the end of the conveyor belt, then the
computer sends an open signal to the solenoid valve control
card. Finally, the corresponding air jet is opened and blows
away the defective parts.

Light source

An appropriate light source can present high-contrast
images for optimal image analysis. Detection is usually
performed in a box to control the lighting as necessary and
prevent the interference of external light. A light source was
installed in a box to obtain photos with sufficient brightness.
Figure 6 showed a few comparisons among light emitting
diode (LED), fluorescent lamps, and halogen light, which
indicated that the endurance, performance cost ratio,
response speed, thermal diffusion, and designability of
LED is the highest. Therefore, LED was selected as light
source. Using light of the same color as the test object will

brighten the image. Illumination experiment results of using
white, red, yellow, blue, green, cyan, and purple LEDs (Fig.
7) indicated that red light source provided the worst contrast
between defects and intact parts and yellow light source
provided the best, so two yellow LED surface light sources
were installed at both sides of the box for sufficient low-
angle lighting. The structure of lighting system is shown in
Figure 8.

Image acquisition

A total of 150 defective and 150 intact bamboo parts were
randomly selected as training samples. A high-speed CCD
camera (128 photos/s) was used to capture images. The
training sample images were saved as 1,280 3 1,024 24-bit
JPG files. Microsoft Visual Cþþ 2013 and Computer Vision
Library (Halcon 17.12, The MVTec, Inc.) softwares were
used to realize the proposed segmentation and identification
algorithm on an Intel(R) Core (TM) i7-4600 CPU @ 2.10
GHz 2.69 GHz, 4.00 GB RAM industrial computer.

Image preprocessing

Median filtering.—The noise in a digital image mainly
originates from image acquisition and transmission process-
es. The illumination level and sensor stability are the main
factors responsible for such noise. Median filtering, average
filtering, and adaptive threshold filtering can be used to
remove noise from images; median filtering was adopted
here to remove salt-and-pepper noise, specifically:

yðiÞ ¼ Med xði�NÞ; . . . ; xðiÞ; . . . ; xðiþNÞ
� �

ð1Þ

Threshold segmentation.—The segmentation process
removes background and reveals the contour of bamboo

Figure 3.—Bamboo parts sorting platform based on machine vision.

Figure 4.—Schematic diagram of the sorting unit.
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parts. Image backgrounds can be removed by watershed
segmentation, color-based segmentation, threshold-based
segmentation, and edge-based segmentation. There is a
significant difference in color between the bamboo parts and
the conveyor belt, so threshold segmentation was selected
here to separate the parts from the belt in the image. The
histograms of belt background and bamboo part pixels
showed in Figure 9 indicated that the grey level of
background pixels is lower than 80 and that of bamboo
part pixels is higher than 150. According to the results of a
series segmentation experiments, the threshold was set to
100 to convert the color image into a gray-scale image and
remove most belt background pixels, and the algorithm was
operated as

Bði; jÞ ¼ Y ði; jÞ Y ði; jÞ.100

0 Y ði; jÞ � 100

�
ð2Þ

Area filtering.—After filtering by gray value threshold,
there was a great deal of noise in the segmented area yet to
be removed. The segmented binary image was labeled using
8-connected components to evaluate the areas of the objects;
then two area threshold values, T1¼ 1,000 and T2¼ 100,000

(Eq. 3), were used to classify the bamboo part and block the
remaining noise. Figure 10 shows an original image, its
median filtered result, and its filtered defect area.

Bði; jÞ ¼ Y ði; jÞ T1 � Area � T2

0 Area , T1 or Area.T2

�
ð3Þ

Feature extraction.—Two processing methods can be
used to extract the characteristics of bamboo parts: (1)
extracting all characteristics of all parts simultaneously, or
(2) extracting each part in turn. The advantage of the first
method is that it can get the shape of defect more precisely.
The disadvantage is that it is considerably more time-
consuming. The first method was selected after weighing its
advantages and disadvantages.

The main purpose of the proposed technique is to separate
defective parts from intact parts. Different features such as
shape, color, gray value, perimeter, and area are usually
used for classification in cases such as this, but the defective
area on the bamboo part has no fixed shape, area, or
perimeter. The color of the defective area does, however,
differ from other areas. Sample images of defect regions,
intact parts, and backgrounds along with regions of color

Figure 6.—Comparisons among (a) light-emitting diode (LED), (b) fluorescent lamps, and (c) halogen light.

Figure 5.—The workflow of the sorting procedure.
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clustered in red–green–blue (RGB) coordinates are shown in
Figure 11, which indicated that they are clustered in
different areas and can be divided into different groups in
RGB coordinates. Therefore, color is feasible as the
recognition feature, so it was used here as the feature for
defect extraction.

Defect detection and location

The support vector machine (SVM), k-nearest neighbor
(KNN), multilayer perceptron (MLP), and radial basis
function (RBF) neural network were compared in separate
nondefective and defective bamboo parts to determine
which best suits the proposed system. The SVM is a
generalized linear classifier that classifies binary data under
supervised learning; it uses a kernel function w 3 xþ b¼ 1
to map the nonlinear data to the high-dimensional space,
then seeks the hyperplane that decompresses the data in the
new space with the maximum margin. The KNN does not
use any learning process. The data set has classifying
eigenvalues in advance, then is classified directly after
receiving new samples. The MLP is a forward artificial
neural network that maps a set of input vectors to a set of

output vectors. It consists of multiple node layers, each of
which is connected to the next layer. In addition to input
nodes, each node is a neuron with a nonlinear activation
function. The MLP overcomes the disadvantage of single-
layer perceptron, which cannot recognize nonlinear data.
The RBF is also a forward network; its hidden layer adopts
nonlinear function as the basis function and its output layer
is a linear function. The input space is converted to hidden
space by the RBF, which makes the original linear
indivisible problem separable.

The R, G, and B values of intact, defective, and
background areas were selected as three feature quantities
for comparison and the identified three areas were taken as
an output. The classification time of each of the four
classifiers is presented in Table 1. The RBF takes the least
time to operate while the SVM classifier takes the longest.
The advantages and disadvantages of each method were
weighed to ultimately select the RBF as the classifier for this
study.

Detection via RBF network.—The RBF network is
composed of an input layer, a middle layer, and an output
layer. The number of nodes in the input layer is equal to the
dimension of the input data, and the number of nodes in the
output layer is equal to the dimension of the output data.
The number of nodes in the hidden layer is determined by
the complexity of the problem. The input layer does not
process the input data but rather passes it directly to the
hidden layer. The basis function of the hidden layer is
formed by a function similar to a Gaussian kernel function,
which generates a partial response to the input signal. The
output layer combines the outputs of the hidden layer
linearly. The R, G, and B channel pixel values were taken
here as the input characteristics while the output data were
the pixel points of the intact area, defect area, and
background area. The Gaussian function was selected as
the hidden diameter basis function of hidden layer as
follows:

RiðxÞ ¼ exp � jjx� cijj2

2r2
i

 !
i ¼ 1; 2; :::;m ð4Þ

where x is the input vector, ci is the center of the basis
function, ri is the perception variable, and m is the number
of perception units.

In the RBF network, input vectors in the input layer are
mapped to the hidden layer in a nonlinear mode. Vectors in
the hidden layer are mapped to the output layer in a linear

Figure 7.—Pictures of bamboo parts under various light sources, (a) white light source, (b) red light source, (c) yellow light source,
(d) blue light source, (e) green light source, (f) cyan light source, and (g) purple light source.

Figure 8.—The structure of the lighting system.
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mode. The linear mapping formula is as follows:

yk ¼
Xm

i¼1

wikRiðxÞ k ¼ 1;2;:::; p ð5Þ

where p is the number of output nodes and wik the weight
between hidden layer node i and output layer node k. A
schematic diagram of the RBF network is shown in Figure
12.

Appropriate center function and weight parameters are
necessary to secure effective training results. Here, they
were optimized according to the feedback mechanism. The
gradient descent method was used to optimize the network.
A series of 200 images of bamboo parts were taken as
training samples and another 100 images as test samples.
The diffusion factor was set to 22 and the error tolerance to
0.001. The training results indicated that the mean square
error decreased as the number of neurons in the hidden layer
increased (Fig. 13). Table 2 lists the mean square error with
neuron numbers of 40, 41, 42, and 43. Table 3 lists the
expected output vectors of intact pixels, defect pixels, and
background pixels. Four typical sample pixel recognition
results are listed in Table 4, and three examples of detection
results are shown in Figure 14.

Defect location.—Once the system recognizes that
defective parts exist, they must be located properly so as
to calculate the time required for the parts to reach the air jet
and be removed from the conveyor belt. The relationship
between the three-dimensional geometric position of a point
on the surface of the object and the corresponding point in
the image was associated on a geometric model of the
camera through calibration.

The imaging principle of camera is shown in Figure 15.
There are four coordinate sets: world, image pixel, camera,

and imaging plane coordinates (from right to left; Fig. 15).
The world coordinates express the positions of certain
objects in reality. The position of a point P is expressed as
(Xw, Yw, Zw) in this coordinate. The origin of the camera
coordinates Oi is located at the focal length center of the
camera; its Zc axis extends along camera’s optical direction
while its Xc and Yc axes are parallel to the virtual imaging
coordinates. There are two kinds of image coordinates:
imaging plane and image pixel coordinates.

As the camera shoots objects in space, the object is
converted from the world to the camera coordinates, from
the camera to the imaging plane coordinates, and then from
the imaging plane to the image pixel coordinates. The
camera lens usually presents radial distortion over the
course of this process. The world coordinates can be
converted to the camera coordinates by rotating and shifting
the matrix while rotating h around the Z axis:

x ¼ x03 cosh� y0sinh ð6Þ

y ¼ x03 sinhþ y0cosh ð7Þ

z ¼ z0 ð8Þ

Equations (6), (7), and (8) can also be expressed in matrix
form as follows:

x

y

z

0
@

1
A ¼ cosh �sinh 0

sinh cosh 0

0 0 1

2
4

3
5 x0

y0

z0

2
4

3
5 ¼ R1

x0

y0

z0

2
4

3
5 ð9Þ

The rotations of a and b angles around X and Y can be
expressed similarly as

Figure 9.—Grey histogram. (a) Belt background pixels, and (b) bamboo part pixels.

Figure 10. —(a) Original image, (b) median filter, and (c) defect area.
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x
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0
@

1
A ¼ 1 0 0
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y0

z0
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5 ¼ R1

x0

y0
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5 ð10Þ

x

y

z

0
@

1
A ¼ cosb 0 �sinb

0 1 0

sinb 0 cosb

2
4

3
5 x0

y0

z0

2
4

3
5 ¼ R1

x0

y0

z0

2
4

3
5 ð11Þ

The conversion from world coordinates to camera coordi-

nates for points Pw can be realized as follows:

Pc ¼ RPw þ T ð12Þ

where T is a translation vector, (tx, ty, tz); R is a rotation

matrix that can be expressed as

R ¼ R1 3 R2 3 R3 ð13Þ

In an ideal state, the transformation from camera

coordinates to imaging plane coordinates is expressed as

follows:

u

v

� �
¼ f

Zc

xc

yc

� �
ð14Þ

where
u

v

� �
is the position of point P in the imaging plane

coordinates.

However, the ideal image differs from the actual image as
a result of distortion of the optical lens. The camera
distortion must be corrected using radial distortion coeffi-
cient k. The ideal image plane coordinates are converted to
the real image plane coordinates with k as follows:

ũ

ṽ

� �
¼ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4kðu2 þ v2Þ

p u

v

� �
ð15Þ

In the last transformation step, imaging plane coordinates
are converted into image coordinates by

r

c

� �
¼

ṽ

sy

þ Cy

ũ

Sx

þ Cx

0
BBB@

1
CCCA ð16Þ

where
r

c

� �
is the position of point P in the image pixel

coordinate, Cx and Cy are the vertical projection of
coordinate centers on the imaging plane, and Sx and Sy are

Figure 11.—Sample image and its spatial distribution of pixels in different regions in the red–green–blue (RGB) co-ordinates.

Table 1.—Schedule of various methods (unit: millisecond). Support vector machine (SVM), k-nearest neighbor (KNN), multilayer
perceptron (MLP), and radial basis function (RBF) neural networks.

Sorting method Image size Training time Recognition time Total time

SVM 1,280 3 1,024 105,705 4,443 110,148

KNN 1,280 3 1,024 9.7 545.5 555.2

MLP 1,280 3 1,024 192.2 32.4 224.6

RBF 1,280 3 1,024 205.3 15.6 220.9
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the distance between adjacent pixels in the horizontal and

vertical directions of the image sensor, respectively.

Calibration serves to minimize the distance between the

central coordinate points mi,j obtained by extracting the edge

contour and the calculated coordinate point Ti (Mi, c) by

projection, which can be expressed as follows:

mindðcÞ ¼
Xl

j¼1

Xk

i¼1

jjmi;j � TiðMi; cÞjj2 ð17Þ

The calibration is obtained by f, k, Sx, Sy, Cx, Cy, tx, ty, tz, a,

b, c, and other parameters. A calibration card was used to

calibrate the camera for a size of 60 mm 3 60 mm, which is

about one-third of the field-of-view. The card was placed in

different positions rotating around the X-axis and Y-axis

appropriately within the view field of the camera, and then

20 photos of different poses were taken to obtain an accurate
distortion coefficient.

Method evaluation

In order to evaluate the performance of the proposed
method in detecting the defect of bamboo part, the area of
defect was selected as the evaluation index. The data set was
divided into training set (two-thirds of the total data) and
test set (one-third of the total data). The coefficient of
determination (R2), root mean square error (RMSEP) and
relative root mean square error (rRMSE) as shown in
Equations (18) ; (19) were used to predict the accuracy.

R2 ¼ 1�

Xn

1
ðyi � y0iÞ

2Xn

1
ðyi � ȳiÞ

2
ð18Þ

Where yi is the measured area of defect, y0i is the detected
area of defect, ȳi is the average of measured area of defect,
and n is the number of samples.

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

1

ðyi � y0iÞ
2

vuut ð19Þ

Figure 12.—Schematic diagram of radial basis neural network.

Figure 13.—Curve of the mean square error.

Table 2.—Partial mean square error (MSE).

Neurons MSE

40 0.00102795

41 0.00100302

42 0.00100302

43 0.000987339
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rRMSE ¼ RMSEP

ȳi

3 100% ð20Þ

10-fold cross-validation divides the data set into 10, and
takes turns using 9 of the 10 data sets as training data and 1
as test data, and then finds the average as the estimate of
accuracy; this was used to evaluate the stability and
accuracy of the method. Accuracy rate, precision rate, and
recall rate, which are three commonly used performance
metrics in evaluating a binary classification problem, were
selected as indicators for evaluating the quality of the
proposed method in classifying rectangle bamboo parts. The
larger their value, the better the classification effect of the
model.

The precision rate (PR) represents the proportion of the
true positive samples in the samples predicted to be positive,
which is expressed in Equation (21).

PR ¼ TP

TPþ FP
ð21Þ

where TP represents positives that are correctly identified,
FP is negatives that are wrongly identified.

The recall rate (RR) indicates how many positive samples
are predicted correctly, which is calculated by Equation
(22).

RR ¼ FP

TN þ FP
ð22Þ

where TN is negatives that are correctly identified.
The accuracy rate (AR) is the ratio of the number of

samples predicted correctly to the total number of samples,
which is obtained by Equation (23).

AR ¼ TPþ TN

TPþ TN þ FN þ FP
ð23Þ

where FN is positives that are wrongly identified.

Software Development

The main interface of the software consists of an image
display area, log display area, parameter setting area, jet test
area, and status display area (Fig. 16). The jet test area was
used to debug the opening and closing of the air jets. The
parameter setting area was given parameters for each serial

port to ensure accurate communication among them. The
image display area is composed of a real-time image display
and detection results display, wherein each defect region is
marked in white color. The log area was used to record the
instructions sent to each air jet and the sending time. The
status display area covers the resolution of the image
acquired by the camera, the total frame number of the image
displayed in the window, and the total frame number of the
image acquired by the camera.

Results and Discussion

A manual sort was compared as a basis with this RBF
neural network–based automatic method. The method can
predict the area of defect effectively (R2¼ 0.64, RMSEP¼
0.042, and rRMSE ¼ 5.54%; Table 5).

A total of 3,000 bamboo parts were used for the final
sorting testing; 1,500 parts were intact and the other 1,500
were defective. The test samples were divided into 100
groups and placed randomly onto the conveyor belt, which
moves forward at a speed of 2 m/second. The test results are
summarized in Table 6. There were 1,360 pieces of
defective parts correctly sorted out and 140 pieces missed.
The correct identification rate and missed rate are 90.6
percent and 9.4 percent, respectively. This correct identifi-
cation rate is greater than that of manual sorting. For those
1,500 intact parts, 110 were false-positively sorted out at a
rate of 7.3 percent, which is slightly lower than the same

Table 3.—Expected output.

Pixel type Expected output

Intact pixels (1, 0, 0)

Defect pixels (0, 1, 0)

Background pixels (0, 0, 1)

Table 4.—Four typical sample pixel recognition results.

Test sample Actual output Expected output

1 (1.1320, 0.1121, �0.0013) (1, 0, 0)

2 (0.1701, 0.1223, 0.9724) (0, 0, 1)

3 (�0.1423, 1.015, 0.1251) (0, 1, 0)

4 (0.0237, �0.1921, 1.0191) (0, 0, 1)
Figure 14.—Three detection examples. (a) Original images and
(b) detection results.

Table 5.—Statistical index values for modeling bamboo parts.

Items Value

R2 0.64

RMSEP 0.042

rRMSE 5.54%
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rate by manual sorting. The statistical results of automatic
sorting and manual sorting, which includes average,
maximum, minimum, standard deviations, and coefficient
of variation (CV) are summarized in Table 7. Here, the
standard deviations indicated that volatilities of the
identified defective parts and intact parts by automotive
sorting and manual sorting among different groups were
small. It is also indicated that volatilities of the identified
defective parts by automotive sorting is lower than by
manual sorting, but that of identified intact parts by
automotive sorting is greater than by manual sorting. The
missed sorting can mainly be attributed to color similarity
between intact and defective regions in some samples. The
response speed of air jet is relatively low because of the
characteristics of compressed air, so if defective and intact
parts happened to be folded together, the intact component
was blown away with the defective one resulting in a false
positive. The sorting time of the 3,000 samples was about 10

minutes. By comparison, manual sorting of the same
quantity of parts takes about 48 minutes.

The results of 10-fold cross-validation experiment listed
in Table 8 indicated that the average accuracy rate, recall
rate, and precision rate of this method were 91.1 percent,
92.5 percent, and 91.7 percent, respectively. And their
standard deviations were 0.0055, 0.0182, and 0.0100,
respectively. Those test result indicated that this sorting
method is robust.

The traditional threshold segmentation method did not
reveal the defective bamboo parts accurately. However, the
intact, defective, and background areas were clustered
effectively in the RGB space of images. The RGB-space
identification is also simpler and more direct than other
methods. An RBF is composed of only three layers with
simple structure and fast convergence; its training and
identification speeds are faster than those of SVM, KNN, or
MLP. The RBF also optimizes the weights of the network

Figure 15.—Schematic diagram of world coordinate, image pixel coordinate, camera coordinate, and imaging plane coordinate.

Figure 16.—Main interface of the software.
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via feedback mechanism, so its training effect is continu-
ously improved.

The results of this test show that the RBF effectively
reveals defects in bamboo parts, but the proposed method
does merit further improvement. For example, the lumi-
nance of some parts is uneven under low-angle lighting; a
more suitable lighting design and light sources are necessary
to ensure every bamboo part within the camera’s field-of-
view receives even lighting. The weight adjustment of the
RBF also depends on the batch gradient descent method,
which is increasingly time-consuming to update as the
sample size increases. The small-batch gradient descent
method (mini-batch GD) and random gradient descent
method (SGD) may be suitable to optimize the network.
Other neural networks, such as random neural networks and
self-organizing neural networks or combinations thereof,
may be a valuable future research direction.

Conclusion

A bamboo part sorting method was established in this
study and supported by corresponding hardware and
software platforms. A series of comparisons showed that
the RBF trains and identifies samples faster than SVM,
KNN, or MLP methods. An RBF neural network with 43
neurons was used to classify defective, intact, and
background areas from images of bamboo parts. The correct
identification rate (90.6%) was found to be greater than that
of manual sorting (89.7%) while the speed is up to four
times greater; however, the false-positive rate (7.3%) is also
greater than that of manual sorting (3.5%) and thus merits
further improvement.

Although the proposed method is much more correct and
much faster than manual sorting, it is a prestudy and does
merit further improvement. A more suitable lighting design
and light sources are necessary to ensure every bamboo part
within the camera’s field-of-view receives even lighting.
Small-batch gradient descent method (mini-batch GD) and
random gradient descent method (SGD) can be considered
to optimize the network.
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