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Abstract
Due to the multidimensional complexity and redundancy between wavelengths in the visible and near infrared (Vis-NIR)

region, the speed and accuracy of data analysis can be affected. This study aims to investigate the feasibility of simplifying
high dimensional data based on transformation of the spectra and local correlation maximization (LCM). These two methods
will be applied to determine the prediction accuracy of air-dry density of Ulmus pumila wood. In this study, the reflectance
spectra (Refl.) were subjected to the reciprocal (1/Refl.) and logarithm reflectance to improve the spectra signal for
prediction. LCM was developed for selecting spectral sensitive regions that were important in the prediction of density. A
local correlation coefficient (r) criterion was developed such that if the r � 0.75 (between wavelength and density), then
partial least squares and support vector machine (SVM) were employed as the prediction method. Likewise, 2D correlation
spectroscopy plots were used to further reduce the data matrix by removing redundant wavelengths. The results showed that
(1) although the sensitive region of density was different, the region of r � 0.80 was mainly in the Vis and NIR spectral
region. Additionally, the performance of models developed from the sensitive region was better than that of data used from
the less-sensitive region. (2) The SVM model was optimized by a genetic algorithm based on the log (1/Refl.) of the sensitive
region. In conclusion, it was found that the spectral transformation presented better density estimation results (R2

c ¼ 0.909,
root mean square error of calibration ¼ 0.014) than when less sensitive wavelengths were used in the data matrix.

Wood density is a critical indicator of wood quality
and variation in density can have a profound effect on end
use applications (Prasetyo et al. 2018). Additionally, tissue
density correlates with the morphological, physiological,
and mechanical properties of wood as a result of strong
intercorrelations with microfibril angle, stiffness, and
strength (Wu et al. 2009, Li and Jiang 2013, Dahlen et al.
2018). The tree can begin to produce tissue of variable
density as early as 3 months old, while genetics can be used
to fine-tune tree density for improved product performance
(Gonçalves et al. 2019). Although the traditional determi-
nation of density through gravimetric means has the best
accuracy, it has been shown that visible and near infrared
(Vis-NIR) spectroscopy can provide good in situ estimation
of within-ring density without having to destroy the sample
for conventional testing (Giroud et al. 2015).

Vis-NIR can also reduce the cost and time of traditional
density-measurement methods. Vis-NIR spectroscopy—a
simple, fast, and nondestructive method—has been widely
applied to agriculture, petrochemical industries, food safety,
and life sciences (Verbeek et al. 2014, Li et al. 2017,

Siriphollakul et al. 2017, Zhuang et al. 2017). Many studies
have demonstrated that Vis-NIR technology can be used for
the analysis of components, species and habitat identifica-
tion, and detection of wood preservation or modification in
the field of forestry (Yang et al. 2012; Dou et al. 2016; Li et
al. 2016, 2018a; Kurata 2017). The qualitative and
quantitative relationship between spectra and wood proper-
ties can be obtained using chemometric methods. However,
the speed and accuracy of spectral data analysis can be
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complex and slow because of the multidimensional nature
and redundancy of the spectral data. Reduction in the
spectra to only those wavelengths necessary for prediction
could be useful in speeding up the process; however, a
reduction in the data matrix content could result in lower
prediction accuracy, and ways to maintain predictability
with less spectral information are a key challenge when
using Vis-NIR spectroscopy.

In the field of agriculture, Sun and Cheng (2010) found
that leaf chlorophyll was highly correlated with their second
derivation spectra at wavelengths 700, 670, 600, 500, 490,
440, and 410 nm. Guo et al. (2015) predicted paddy soil
available nitrogen (AN) content using sensitive wavelengths
(694, 2,058, and 2,189 nm) through 16 kinds of mathemat-
ical transformations and obtained good results (best R ¼
0.748). It can be found that the spectral sensitive region of a
particular trait can be used for calibration and simplifying
spectral data can result in good prediction accuracy in the
agricultural sector. However, to our knowledge, we could
not find other studies that used these transformation
techniques to predict wood density, and feel this research
would be useful to industry and academic entities.

In this study, Ulmus pumila wood samples were used for
spectra collection and air-dry density determination. Dif-
ferent spectral transformations were first applied to the
wood spectra to improve the sensitivity of the prediction
model. Local correlation maximization (LCM) methods
(Zhang et al. 2017) were developed for selecting the spectral
sensitive region most correlated to air-dry density. The
chosen sensitive region was used for model establishment
with linear (partial least squares, PLS) and nonlinear
methods (support vector machine, SVM), respectively.

Materials and Methods

Sample preparation

Ulmus pumila L. is one of the major commercial tree
species in northeastern China (Xu et al. 2000). Eight Ulmus
pumila trees were harvested from the location 1268300–
1278160E, 428060–428480N, Jilin Province, China. Five-
centimeter disks were cut from each tree at 1-m intervals
along the stem with 69 total discs prepared for model
calibration and spectra collection. The disks were air-dried
in an environment controlled laboratory (temperature: 208C
6 28C; relative humidity: 65% 6 3%). Additionally, to
reduce the roughness of sample surface, the cross-sections
of all disks were polished using an electric plane.

Vis-NIR spectra collection and air-dry
density measurement

Cell spacing, anatomy position–frequency, and annual
ring width influence wood density, and these variables are
more obvious when viewed in the cross-section. Therefore,
the Vis-NIR spectra were collected from a cross-section of
each sample using a LabSpec Pro FR/A114260 (Analytical
Spectral Devices, Inc., Boulder, Colorado). Additionally, a
traditional fiber-optic probe was replaced with a glare probe
to obtain more spectral information. Before spectra
collection, the spectrometer was calibrated with a commer-
cial white plate made of polytetrafluoroethylene. Each
sample was scanned three times and the average spectrum
was regarded as the original spectrum. The air-dry density
of the samples were measured at 12 percent moisture
content (Standardization Administration of China 2009).

Spectral data analysis

Spectra of transformations.—Even though the whole
process of spectra collection was determined in a controlled
environment, there can still be uncontrollable sources of
error during spectra collection such as spectrometer signal,
and environmental influence on data quality and corre-
sponding accuracy and precision (Via et al. 2005).
Therefore, the reflectance spectra (Refl.) were subjected to
reciprocal (1/Refl.) and logarithm reflectance (log(Refl.) and
log(1/Refl.)) to eliminate multiplicative effects (He et al.
2006). The spectra of transformations were implemented by
using Matlab R2014b (MathWorks, Natick, Massachusetts).

Selection of sensitive regions to air-dry density varia-
tion.—To simplify the complexity of modeling for multi-
dimensional spectral data, the reflectance spectra (Refl.) was
subjected to reciprocal and logarithm transformations. The
LCM was used for selection of important wavelengths in the
prediction of air-dry density. The region was deemed
statistically important if the local correlation coefficient
(r) was greater than or equal to 0.75 (r � 0.75) when a
correlation matrix was run between the spectra and density.
The LCM was also implemented in Matlab R2014b
(MathWorks).

In this study, 69 samples were randomly divided into a
calibration set (50 samples) and a prediction set (19
samples). Given that X(m,n) is the matrix of the Vis-NIR
spectral data, xij is the vector of X(m,n), and yi is the air-dry
density value, where m is the number of samples (m¼50 for
calibration set) and n is the wavelength of Vis-NIR spectra
(n ¼ 2,151). The LCM was used to analyze the correlation
between xij and yi, and local correlation coefficients (r) for
different spectra of transformations were obtained. High
correlation should consist of high r (Mo 2015). The
computation equations of r is shown as follows:

rj ¼
Xm

i¼1

ðxij � xj Þðyi � yÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

ðxij � xj Þ2
Xm

i¼1

ðyi � yÞ2
s

ð1Þ
where x̄j and ȳ represent the mean of the vector of the Vis-
NIR spectral data and the air-dry density value, respectively,
which are given by

xj ¼
Xm

i¼1

xij=m ð2Þ

y ¼
Xm

i¼1

yi=m ð3Þ

where i¼ 1, 2. . .m, j¼ 1, 2. . .n, the meanings of m and n are
the same with Eq. (1).

Vis-NIR model calibration and evaluation.—Vis-NIR
technology is an indirect nondestructive method in which
the method for the prediction of sample properties can be
obtained through advanced chemometric procedures. In this
study, the performance of linear and nonlinear methods,
including PLS regression and SVM, were compared. PLS is
a useful linear method in the modeling of multidimension
spectral data. It simplifies spectral data and selects variables
by correlating the independent variable yi with the Vis-NIR
model. PLS was implemented in The Unscrambler V10.4
(CAMO Software AS, Oslo, Norway). PLS does inflate the
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error of the peaks in the loading vector; however,
transformations such as those being explored have been
shown to minimize this error (Via et al. 2014).

The SVM was first proposed to solve classification
problems. In recent years, it has been shown that SVM is a
powerful method for classification and regression in
agriculture, life sciences, and other fields (Hajikhodaverdi-
khan et al. 2018, Oguntunde et al. 2018, Zhi et al. 2018).
SVM was used for Vis-NIR model calibration because of
the advantages of processing small sample sets and high
dimensional spaces effectively. Grid search (GS) and a
genetic algorithm (GA) were employed to optimize the cost
parameter c and the radial basis function (RBF) kernel
parameter gamma. The SVM was implemented in Matlab
R2014b (MathWorks). It is hypothesized that SVM may be
superior to more traditional methods of transformation that
is commonly used during classification (Kurata 2017) and is
the subject of this research.

After the sensitive regions that correlated to air-dry
density were selected using the LCM algorithm, the PLS
and SVM transformations were executed to establish Vis-
NIR models, respectively. Additionally, the performance of
the band with higher local correlation coefficients (r � 0.80)
in sensitive and less-sensitive regions (0.7 , r , 0.75) were
compared. The performance of calibration and prediction
models was evaluated based on determination coefficients
(R2), root mean square error (RMSE), standard error of
estimation (SEE), mean absolute percentage error (MAPE),
and residual predictive deviation (RPD). Lower RMSE,
SEE, MAPE and higher R2, RPD values indicate higher
model accuracy (Yan et al. 2013). The criteria were
calculated according to Eqs. (4) to Eq. (8), respectively.

R2 ¼ 1�
Xm

i¼1

ðyi � byi Þ2=
Xm

i¼1

ðyi � yÞ2 ð4Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

ðyi � byi Þ2=m

s
ð5Þ

SEE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

yi � byı �
1

m

Xm

i¼1

ðyi � byı Þ
 !2

=m� 1

vuut ð6Þ

MAPE ¼
Xm

i¼1

jðyi � byi Þ=yij=m 3 100% ð7Þ

RPD ¼ SD=SEE ð8Þ
where SD is standard deviation of prediction set.

Results and Discussion

Statistical characteristics of wood air-dry
density

The statistical characteristics of the samples are illustrat-
ed in Table 1. The air-dry density ranged from 0.909 to
1.128 g/cm3, with an average value of 1.062 g/cm3. The
standard deviation (SD) in the calibration and prediction set
were similar and smaller than 0.05. Additionally, there was
low negative skewness and positive kurtosis, indicating low
scatter distribution.

Correlations between wavelength variables

As shown in Figures 1A through 1D, regardless of various
spectral transformations, a relatively high correlation was
obtained within each of the two regions (i.e., near 500 to
1875 nm, and 1800 to 2500 nm). It can be seen that the Vis-
NIR spectral region showed high redundancy and selecting
only highly sensitive variables related to the properties of
interest is needed for simplifying the high-dimensional
spectral-data matrix.

Sensitive region of air-dry density analysis

There was high redundancy of wavelength variables (Fig.
1), so the LCM was performed for selecting only those
sensitive regions of air-dry density based on local
correlation coefficients between different spectra and air-
dry density. The correlation coefficients and frequency
statistics are shown in Figure 2 and Table 2, respectively.

It was observed that the correlation levels between
wavelengths were dependent on the type of spectra
transformation performed. This suggests there is the
potential for different transformation methods to yield
better calibration models. In terms of reflectance spectra
(Refl.), there was a negative relationship between Refl.
spectra and air-dry density in the wavelength range of 593 to
813 and 1,148 to 1,036 nm, while the other bands exhibited
a positive correlation.

For the 1/Refl. spectral data, there were negative
correlations in the Vis-NIR spectral region (350 to 2,500
nm). Compared with the Refl. spectral data, the local
correlation coefficients in the NIR spectral region of 1,897
to 2,476 nm were significant—they showed values up to
0.70.

Compared with Refl. spectral data, the log(Refl.) spectra
improved the correlation in the Vis spectral region of 350 to
401 nm; among which, the correlation coefficient located in
367 nm was increased from 0.72 to 0.78, and the others were
all improved to .0.80. Additionally, the correlations in the
wavelength range of 1,890 to 2,438 nm were improved.
Comparing 1/Refl. spectral data, it could be found that the r
located in 1,922 nm, 1,932 nm, and 1,933 nm were
improved to .0.80. According to the properties of
logarithmic function, the distributions of r for log(1/Refl.)
and log(Refl.) spectral data were symmetrical to wavelength
axis.

Figure 3 shows the distribution of the sensitive wave-
lengths of air-dry density (r � 0.75). Although the sensitive
regions were different for Refl., 1/Refl., log(Refl.), and
log(1/Refl.) spectral data, the distribution of r � 0.80 were
located at the Vis spectral region of 350 to 391 nm and NIR
spectral region of 1,932 to 1,933 nm. The Vis spectral range
was assigned to polycyclic aromatic hydrocarbons and their
derivatives (Workman and Weyer 2007). As for the NIR
spectral region, there was a narrow band associated with
density variance. However, this band was quite close to the
absorption peak of lignin and cellulose as associated with
1,900 nm (Üner et al. 2011). Additionally, it is associated
with the combination of O–H deformation and stretching
vibration (Schwanninger et al. 2011, Wójciak et al. 2014).

Establishment of Vis-NIR calibration models

To better analyze the effect of important spectral regions
on the prediction of air-dry density, linear (PLS) and
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nonlinear (SVM) methods were employed. The results of
the PLS model are shown in Table 3.

Regardless of the transformation, the performance of the
model that uses the sensitive region (r � 0.75) to predict air-
dry density was better than when the less-sensitive region
was included (Table 3). Compared with the less-sensitive
region, the accuracy of models developed from very
sensitive regions was indeed better. However, as for 1/Refl.
spectral data, the accuracy of models developed from less-
sensitive regions (R2

c ¼ 0.677) was comparable to the highly
correlated region in the sensitive region (R2

c ¼ 0.675; Table
3). This may be due to the fact that the number of variables

selected into models of 0.70 , r , 0.75 (no. ¼ 347) were
larger than others.

For the linear models, the best performance was from the
log(1/Refl.) spectral data transformation on the sensitive
region, with R2

c and root mean square error of calibration
values of 0.870 and 0.017, respectively (Table 3). The next
best model was when the log(Refl.) spectra transformation
was used. Compared with the models using the less-
sensitive region, for the models that used the highly
correlated region, the R2

c was increased by 33.03 and
11.54 percent, respectively (Table 3). This demonstrated
that the log(1/Refl.) spectral transformation coupled with the

Table 1.—Air-dry density statistics of Ulmus pumila wood.

Sample set No. of samples Max. (g/cm3) Min. (g/cm3) Avg. (SD) (g/cm3) Skewness Kurtosis

Calibration set 50 1.128 0.909 1.061 (0.047) �1.461 2.743

Prediction set 19 1.120 0.962 1.065 (0.039) �1.079 1.593

Total 69 1.128 0.909 1.062 (0.045) �1.408 2.644

Figure 1.—2D correlation coefficient plot between different spectra of transformations and corresponding wavelength variables. (A)
Refl. spectral data; (B) 1/Refl. spectral data; (C) log(Refl.) spectral data; (D) log(1/Refl.) spectral data.
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sensitive region of air-dry density not only reduced the
dimension of the spectral data matrix, but also the model
obtained a good fit. This was an indication that the quality of
the information was perhaps improved while the amount of
information needed for collection or analysis was reduced.

The improved models developed from spectra only from
the sensitive region performed well, so this same reduced
data matrix was used to build nonlinear models using SVM.
The GS and GA were used for the optimization of the cost
parameter c and RBF kernel parameter gamma. The results
of SVM models were shown in Table 4.

For the different methods of transformation, performance
of the SVM models optimized by GA was superior to that of
the GS-optimized SVM and PLS models; R2

c were all .0.75
(Table 4). Although the SVM is a nonlinear modeling
method, the results of SVM optimized by GS were inferior
to the PLS models, except for log(1/Refl.) spectra. This
could be caused by the nonheuristic algorithm of GS, which
searches the cost parameter c and RBF kernel parameter
gamma in a limited region. It should be noted that the
reasonable selection of parameters is critical in modeling.
Among the SVM models, the combination of log(1/Refl.)
spectra and GA method achieved the best performance; the
cost parameter c and RBF kernel parameter gamma were
99.653 and 0.001, respectively (Fig. 4). In comparison with
GS-optimized SVM model and PLS model, the R2

c was
increased by 0.44 and 4.48 percent, respectively.

The relationship between measured air-dry values and
predicted values based on GA-optimized SVM models using
log(1/Refl.) spectra are shown in Figure 5. The SVM model

optimized by GA obtained good predictive performance,
laying the basis for air-dry density estimation.

After a review of the current literature, few studies have
focused on the comparison of different transformations of
spectra prior to modeling wood properties, the most
common spectra data matrix being the reflectance spectra
or log(1/R) spectra (Ramirez et al. 2015, Inagaki et al. 2018,
Li et al. 2018b). In the field of agriculture, Sun et al. (2018)
applied five spectral transformations including reflectance
spectra, reciprocal, reciprocal logarithm, first-order, and
second-order differential spectra to predict the soil organic
carbon (SOC) of samples from a coal mining area. They
found that the spectral reflectance obtained the best results
when predicting SOC, which differed from the results of this
study, suggesting that there is not a universal transformation
that works for all scenarios. This difference may be due to
the difference of properties between soil and wood. In
addition, the different denoising methods, such as Savitaky–
Golay (SG), multiple scattering correction (MSC), and the

Figure 2.—2D local correlation coefficient plot between different
spectra of transformations and air-dry density.

Table 2.—Local correlation coefficients statistics for different
spectral transformations.

Spectra of

transformations

r . 0.70

(no.)

r . 0.75

(no.)

r . 0.80

(no.)

Max. r

(nm)

Refl. 294 131 46 375

1/Refl. 473 126 32 354

log(Refl.) 453 192 54 355

log(1/Refl.) 453 192 54 355

Figure 3.—Sensitive region of air-dry density for different
spectra of transformations.

Figure 4.—The iterative fitness trend of the genetic algorithm–
optimized support vector machine for searching the optimiza-
tion parameter.
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combination of SG and MSC, were performed before the
spectra of transformation in their study.

Vis-NIR spectral data often contain redundant informa-
tion that makes modeling more difficult. To assist with this
problem, the LCM was used to analyze which wavelength
regions were sensitive to variation in air-dry density. It
could be observed that the performance of models
developed from the sensitive region was better than that
of the less-sensitive region, regardless of the different
spectral transformations. This is because specific absorption
bands can be assigned to various wood chemical constitu-
ents such as lignin, cellulose, and hemicellulose (Cheng et

al. 2018); and the spectra sensitive regions simply covary
with this underlying chemistry. Additionally, the prediction
accuracy of SVM model optimized by GA was .0.85 and
superior to the results of Schimleck et al. (2018), which
demonstrated the feasibility of simplifying the multidimen-
sion spectral data and keeping a good-fitting model based on
LCM and GA-optimized SVM model.

Conclusions

This study investigated the effects of various combina-
tions of spectral transformations and LCM algorithms on
wood air-dry density estimation based on Vis-NIR spec-
troscopy. The correlation between density and spectra
varied with the method of spectra transformation. The
LCM algorithm selected the most statistically sensitive
region of the spectra in relation to air-dry density (r � 0.75)
for Refl., 1/Refl., log(Refl.), and log(1/Refl.). Although the
sensitive regions were different, there existed the same band
(i.e., the region of r � 0.80) in Vis spectral region (i.e., 350
to 391 nm) and NIR spectral region (i.e., 1,932 to 1,933
nm), which was critical for the prediction of density. The
linear (PLS) and nonlinear (SVM) modeling results using
sensitive regions demonstrated better accuracy than less-
sensitive regions in density estimation, regardless of spectral
transformations. In comparison with PLS and SVM models,
the performance of GA-optimized SVM model based on the
sensitive region was better than PLS and the GS-optimized
SVM model. In conclusion, this study improved the
prediction and accuracy of the air-dry density models by
selecting only those wavelengths that were most sensitive.
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