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Abstract

Aiming to provide economical equipment support for nondestructive wood testing, we developed a wood computed
tomography (CT) imaging system to aid wood researchers in accurately understanding wood internal structures and defect
characteristics. The wood CT system consists of an X-ray source, an X-ray detector, an electric rotational stage, and a
computer. The X-ray source projects a fan-shaped X-ray beam to the wood, and the X-ray detector captures the penetrated X-
ray intensity data when the wood is at different angles of rotation. The projection data were preprocessed before they were
used for image reconstruction. An improved filtered back-projection (FBP) algorithm specialized for wood cross section CT
image reconstruction was proposed. The traditional Ram-Lak (RL) filter and Shepp-Logan (SL) filter were replaced by a
Butterworth filter. The Butterworth parameters were determined to achieve a desirable compromise between spatial
resolution and image noise. Two pieces of cylindrical log (Thuja sp., Pinus sp.) and a block of laminated timber were
scanned. The reconstructed images clearly revealed the internal structures of wood, and the fine features such as pith, annual
growth rings, radial cracks, knots, and outer edge were enhanced, while the image noise and blurring effect were suppressed.

Computed tomography (CT) imaging is one of the most
powerful nondestructive techniques that can be used to
obtain the internal structure characteristics of many
materials (Hsieh 2003). This nondestructive technique
provides image ‘‘slices’ representing cross-sectional den-
sity distribution of a scanned object (Kak and Slaney 1999).
Because it can provide an internal view of an object, CT is
widely used in various industries in addition to medical
diagnostics. In the wood industry, CT imaging of wood
refers to reconstructing the cross-sectional image of wood
from projection data collected by illuminating the wood
from many different directions, which is based on the degree
of X-ray absorption being different in various wood
structures. In a wood CT image, the grayscale value of a
pixel is directly proportional to the X-ray absorption degree,
which is then correlated with the wood density at the pixel
location. By measuring the X-ray attenuation coefficients
within wood, solving for the two-dimensional (2D)
distribution of coefficients of the wood cross section, and
generating a grayscale image, a tomographic image of wood
can be produced.
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CT offers great potential for nondestructive testing of the
internal structure of wood, providing exact information for
logs or lumber on characteristics such as density and
internal defects (Schmoldt et al. 2000a, 2000b; Fromm et al.
2001; Espinoza et al. 2005; Freyburger et al. 2009; Hou et
al. 2009). Many researchers have studied CT image
processing and internal defects recognition in recent years
(Zhu et al. 1996, Sarigul et al. 2003, Bhandarkar et al. 2005,
Longuetaud et al. 2012, Wehrhausen et al. 2012). Based on
the image processing results, detailed knowledge of the
location, orientation, and size of internal defects in logs is
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obtained. Three-dimensional (3D) reconstruction of defects
from cross-sectional CT images is then possible, which can
be used to guide log sawing decisions, arriving at better log
sawing strategy and maximization of log value (Schmoldt et
al. 1996; Bhandarkar et al. 2002, 2006, 2008; Andreu and
Rinnhofer 2003a, 2003b; Chang and Gazo 2009). Studies on
lumber or plywood grading using multisensor machine
vision including X-ray CT have also been carried out,
because grading lumber based solely on external informa-
tion with little or no information about the internal structure
might cause erroneous estimation of lumber price (Pham
and Alcock 1998, Kline et al. 2000).

While most of the studies on the use of CT images have
focused on sophisticated automatic internal feature detec-
tion, very little work has been done on economical CT
scanning equipment in the wood industry. Wood nonde-
structive testing research is mainly based on industrial and
medical CT scanners, but medical CT scanners have been
shown to be inappropriate for the wood industry (Wei et al.
2009, 2011). An in-depth knowledge of log and board
internal features is required, and their determination needs
proper scanning systems (Wei et al. 2011). Therefore, CT
scanners that are specifically designed for the wood industry
were developed. Schmoldt et al. (1999) designed an X-ray
tangential CT scanner prototype to allow for time saving in
the scanning process, but this tangential scanner lacked an
efficient image reconstruction algorithm. Andreu and
Rinnhofer tested an airport scanner (Invision CTX 2500)
for log scanning, but the scanner provided low spatial
resolution images (Andreu and Rinnhofer 2001, 2003a;
Rinnhofer et al. 2003). Swedish researchers tested an X-ray
linear cone-beam tomography device to directly obtain 3D
images of logs; the knots were reconstructed with sufficient
accuracy to allow for quantitative optimization, but
heartwood was barely distinguished from sapwood due to
the missing data (Flood et al. 2003, Seger and Danielsson
2003). In Canada, FPInnovations-Forintek had an industrial
CT scanner that was designed by Bio-Imaging Research and
tested by Middleton et al. (2003) on white spruce (Picea
glauca) logs, but image quality was judged as not being
satisfactory enough to be included in a permanent CT stem
bank database (Middleton et al. 2003).

Although industrial and medical CT scanners may
provide high-resolution images, these scanners are generally
very expensive, and the core algorithms are unopened. In
2008, MiCROTEC GmbH announced the commercializa-
tion of an industrial CT scanner (CT.LOG) for log scanning
(http://www.microtec.eu/), but its technical details appeared
to be commercially protected. In addition to the technical
aspects, economic feasibility was analyzed because of the
high cost of CT scanners (some cost figures were given in
Harding et al. 2007). The primary motivations for our work
were to aid in solving the problems in the existing wood CT
scanning systems and to provide exact internal structure
information for logs or lumber at a lower cost than other
available systems. We developed a wood CT imaging
system to aid wood researchers in accurately understanding
wood internal structures and defect characteristics.

Methods

Wood samples

For this study, two pieces of cylindrical log and a block of
laminated timber (Fig. 1) were sampled. Log No. 1 (Thuja sp.)
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Figure 1.—Wood sample photo: (a) Log No. 1; (b) Log No. 2;
and (c) No. 3 laminated timber.

had a cross-section diameter of 18.9 cm, and log No. 2 (Pinus
sp.) had a cross-section diameter of 9.4 cm. The third sample
(No. 3) was a laminated timber made up of four pieces of
tangential lumber that was 12.4 by 6.6 cm in cross section.

Wood CT system setup

The wood CT imaging system consists of an X-ray source
(IXS160BP200P040, VIJ Technologies, USA), an X-ray
detector (XDAS-V3; Sens-Tech Ltd., UK), an electric
rotational stage, and a computer that controls the CT system
as a central processing unit. The X-ray source can generate a
fan-shaped beam, the size of the X-ray focal spot is 0.8 mm,
and the tungsten target voltage of the X-ray tube is 10 to 160
kV, with continuous maximum output power of 500 W (VJ
Technologies 2014). The X-ray detector is a linear scanner
for data acquisition in X-ray line-scan application, which has
1,280 detector channels. Each detector channel is 0.4 mm,
and all the detector channels can be connected end-to-end
forming a continuous scanning array over 512 mm (1,280 by
0.4 mm = 512 mm; Sens-Tech Ltd. 2014). A 1.8-cm-thick
aluminum plate is attached in front of the X-ray tube to filter
the low energy X-ray photons, which might be absorbed by
wood for better imaging. During wood scanning, the X-ray
source and the X-ray detector are stationary, while the wood
is fixed in the center of the electric rotational stage rotating
along with the stage. The diagram of the CT system
configuration is shown in Figure 2a, and a photo is shown
in Figure 2b. For each axial scanning, the X-ray tube voltage
and current were fixed at 120 kVp and 0.7 mA, and the X-ray
detector integral time was 5 ms. The wood was scanned by
360 steps X 1°/step rotation scan protocol lasting for 3 min.
One frame of projection was acquired after each rotation step,
and 360 lines of measured projection data were collected
after the whole scanning process.

Data acquisition and preprocessing

The computer sends a data-collecting command to the X-
ray detector via USB interface, the penetrated X-ray
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Figure 2—(a) Diagram illustration and (b) photo of the wood computed tomography system.

intensity data are acquired and converted to digital signal,
and then they are transmitted to the computer and saved as
database files. Owing to dark-field offset, defective
channels, and inconsistent channel response, the raw data
from the X-ray detector show spatial variation, and therefore
it is necessary to perform data preprocessing before image
reconstruction that includes the following steps (Kak and
Slaney 1999, Hsieh 2003).

Dark current subtraction—The following equation can
be used for subtracting dark current data from raw data:

I.=1-1, (1)

where / and I.; represent raw data and subtracted data,
respectively. I, is the average of multiframe dark-field
current, which should be collected under the condition of a
closed X-ray source. For each CT scan, raw data and dark
current should be acquired under the same system settings.

Defective channels interpolation—Substituting two ad-
jacent channels for a defective channel by interpolation, if
the xth channel is a defective one, interpolation can be
implemented by

Ia(x—=1)+1I (x+1)
1 : 1 @)

where /.,(x) is the xth channel corrected value, and 7,.(x —
1) and 7., (x + 1) stand for the (x — 1)th channel and (x + 1)th
channel value.

Inconsistent response correction—Solving each chan-
nel’s correction factor and then multiplying each channel’s
value by the correction factor, correction factors c(x) can be
determined as

Icz(x) =

where I, is the flat-field value, which is corrected under the
condition that the X-ray source is open and no object placed
in scanning area; /; is the dark-field value; and N is the
number of the X-ray detector channels. N = 1,280 in our
wood CT system.

Line integral projection calculation—Turning X-ray
intensity data into line integral projection used for image
reconstruction can be calculated with Equation 4:
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where I and I, stand for the X-ray intensity data with and
without wood in the scanning area, respectively, and u(X) is
the X-ray linear attenuation coefficient.

CT reconstruction algorithm and
implementation

After data preprocessing, the filtered back-projection (FBP)
algorithm is adopted to reconstruct the wood cross section
image from the X-ray projections (Hsieh 2003, Gonzalez and
Woods 2011). Because the required image resolution depends
on wood internal features (e.g., knots, decay, ring width, pith,
cracks) and on wood specification (e.g., species, growth rate,
log diameter), an improved FBP algorithm specialized for
wood cross section CT image reconstruction is proposed.

FBP algorithm description—Based on the well-known
Fourier slice theorem, which states that the Fourier
transform of a projection [i.e., P(®,0)] is a slice of the 2D
transform of the region from which the projection is
obtained [i.e., flx,))]:

P((D 7e> = [F(u7v)]u:mcose;v:wsin9 (5)
= F(®wcos 6, msin 0)

where f(x,y) represents the 2D image to be reconstructed and
F(u,v) is the 2D Fourier transform of flx,y). Next, the
Fourier slice theorem is used to derive an expression for
obtaining f{x,y) in the frequency domain. The image
function f{x,y) can be recovered from its Fourier transform,
F(u,v), by the inverse Fourier transform:

+o0 +o0
flxy) = / / F(u, v)&>™ ) duy (6)

Let u=m cos 0 and v = o sin 0, then dudv = wdwd0, and
the preceding integral Equation 6 in polar coordinates can
be expressed as

2n o0
flxy) = / / F(wcos 0, msin 0) /2™ (eos+sin0) 76,70
o Jo
(7)

Then, from the Fourier slice theorem,

2n ptoe )
f(x,y) = / / P((D , e)ef27tm (xcosO+ysind) odod0 (8)
0 0
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In terms of integration with respect to ®, the term x cos 0
+ y sin 0 is a constant, which could be recognized as p.
Therefore, Equation 8 can be expressed as

2n o0
16 = [T [ oipto e o a9

p=xcos0+ysin®
)

The inner expression is in the form of a one-dimensional
(1D) inverse Fourier transform, with the added term || as a
1D filter function in the frequency domain. As for the FBP
algorithm referred to above, projections are first filtered and
then back projected to reconstruct the original image.

Filter design—The filtering component of the FBP
algorithm is the foundation for dealing with the image
blurring problem when the projected data are noisy, and
how to choose a proper filter function is the key point to
reconstruct good quality CT images (Farquhar et al. 1998).
In Equation 9, the filter function |®| is a ramp and has the
shape of a ““V” extending infinitely in both directions,
which is not integrable in the continuous case. Mathemat-
ically, limiting the width of the ramp implies that it is
multiplied by a window function in the frequency domain,
as expressed in Equation 10, which tapers the “‘tails’” of the
filter, thus reducing its amplitude at high frequencies.

H(o) = |of - g(w) (10)

where g(®) represents a window function, and H(w) is the
transfer function.

In practice, the traditional filters in the FBP algorithm
include the Ram-Lak (RL) filter and the Shepp-Logan (SL)
filter. But for the two filters, the image quality is not
satisfactory when the projections are noisy. The choice of
filter for a given image reconstruction task is generally a
compromise between the extent of noise reduction and fine
detail suppression (and of contrast enhancement in some
cases), as well as the spatial frequency pattern of the image
data of interest (Maher 2014). In this article, the standard
filtering of projections with the window ramp kernel is
replaced by the Butterworth filter owing to its wide range of
frequency and adjustability of frequency parameters (Erer
2007). The transfer function of the Butterworth filter is
defined as follows:

H(m):|m|-; (11)

1+ ((n/wc)ZN

where o, is the frequency parameter and M is the filter order.
The filter curve can be changed by adjusting the two
parameters, which should be chosen to correct for the image
blurring effect and to enhance or suppress features in the
back-projected image. The Butterworth filter in the spatial
domain can be recovered from its transfer function H(®) in
the frequency domain by the inverse Fourier transform,
which will be used for image reconstruction.

Computer implementation—To implement the FBP
algorithm on a computer, the back-projection operation is
discretized, and the ramp filter is windowed and sampled,
because convolution generally turns out to be more
computationally efficient. Note that Equation 9 cannot be
implemented directly in its present form: the term inside the
brackets is the inverse Fourier transform of the product of
two frequency domain functions. Based on the convolution
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theorem, multiplication of two functions in the Fourier
domain is equivalent to the convolution of two correspond-
ing spatial domain functions. Assuming the corresponding
function of P(w, 0) in the spatial domain is the projection
p(p, 0) and letting the spatial domain function /(p) denote
the inverse Fourier transform of |®|, Equation 9 can be
rewritten as

2n
fy) = / 1(0) X p(0, 0)] rcosgpen®®  (12)

where the asterisk denotes convolution. Here, A(n) denotes
the inverse Fourier transform of the Butterworth filter H(®),
and p(n) denotes the discrete projection series. In discrete
space, the convolution kernel in Equation 12 can be
expressed as

p(n) = p(n) X h(n)

- %P[(ﬂ—l)—l}h(z),nzlwmw (13)
I=—N

where p(n) represents an individual back projection at an
angle 0, which can be obtained by convolving the
corresponding projection and the filter function, and raw
is the length of projection series, as well as the number of X-
ray detector channels. Because the filter function /(n) in the
spatial domain is symmetrical and has infinite length
theoretically, for convenience of storage and computation
on a computer, 2N + 1 points are extracted from the filter
function.

In our system, the number of projections and the sampling
distribution are determined by the X-ray detector, and the
reconstructed image is discrete. Assuming the sampling
angles 0 are evenly distributed in the internal [0,27) and all
back-projection images are square with N X N pixels, the
complete back-projected image f{x, y) is obtained by
integrating all the individual back-projected images over
angles 0. Here, Equation 12 can be rewritten in the discrete
form:

21
f(x,y) = f(xcos + ysin6,6) (14)

6=0

where the variable x cos 0 + y sin 0 is simply the distance
from each pixel point (x, y) to the X-ray line that goes
through the origin of the coordinate system and forms an
angle 0 with respect to the x axis. Equation 14 states that the
reconstruction image f{x, y) at location (x, y) is the
summation of all filtered projection samples that pass
through that point.

Wood cross section image reconstruction

Sinogram analysis—Figure 3 shows the projection data
sinogram and the wood axial cross section reconstructed
image (image size is 1,024 by 1,024). The sinogram is a
useful tool for analyzing projection data, which presents the
data set taken over a 360° range. In the sinogram space, the
horizontal axis represents the projection angle and the
vertical axis represents the detector channels. Therefore, a
single projection is shown in the sinogram as a set of
samples located along a vertical line, which is obtained by
Equation 4 in this article. The data are collected over all
projection angles, forming a 2D image with intensities
representing the magnitude of projections. For illustration,
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Figure 3.—(Left) Sinogram and (right) reconstructed image of
(a) Log No. 1, (b) Log No. 2, and (c) No. 3 laminated timber.

the high-intensity curves are bright and located in the
middle of the sinogram, corresponding to the projections
formed by the wood itself; the other low-intensity (close to
zero) area is dark background, which is formed by the
projections of air. Comparing a single sinogram and the
corresponding reconstructed image, the width of high-
intensity curves is almost equal to the size of wood cross
section. The results verify that the projection data are
effective, and the reconstructed images are reasonable.
Comparison between reconstructed images and photos—
As shown in Figure 4, the wood cross section reconstructed
images (right) were compared with the photos (left) to
illustrate the validity of reconstructed results. On condition
that wood samples were not destroyed by cross-sectional
sawing, and to make CT images and photos have
comparability, the wood cross section below the top section
for 1.5 cm was chosen to be scanned, because the two

FOREST PRODUCTS JOURNAL VoL. 68, No. 2

Figure 4.—(Left) Photo and (right) reconstructed image of (a)
Log No. 1, (b) Log No. 2, and (c) No. 3 laminated timber.

sections might have similar internal structures based on tree
growth characteristics.

From the reconstructed image of Log No. 1 shown in
Figure 4a, we can see that the outer edge of the log is clear;
a radial crack extends from the right edge to pith, which
basically matches the photo. The annual growth rings in
heartwood are clearly visible and uniformly distributed,
while the rings in sapwood are difficult to distinguish
because they are dense and too narrow in width. Figure 4b
shows that the reconstructed image of Log No. 2 has good
resolution, which is smooth and noiseless, and the outer
edge and internal structures, such as pith, annual growth
rings, radial cracks, and knots, can be identified clearly. The
annual growth rings are shown as a series of concentric
circles, but the rings are broken and distorted by cracks and
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knots, respectively. The cracks have the lowest material
density because they are composed of air; the left radial
crack, which extends along the radial direction from pith to
the left boundary, is extremely obvious, and the upper right
crack is minor but still can be distinguishable. There is a
knot on the bottom right of the reconstructed image, which
is the portion of a branch embedded in the log. It appears
brighter owing to the higher density of cells within the knot.
In Figure 4c, the reconstructed image of No. 3 laminated
timber shows that the boundary and texture of each piece of
lumber are clear; the outer two pieces have narrow rings,
while the middle two pieces have relatively wide rings,
which are easy to identify.

To numerically illuminate the accuracy of reconstructed
images, Table 1 gives the comparison results between the
manually measured value and the estimated value from
wood reconstructed images. For Log No. 2, the estimated
value of the knot depth is 32 mm, but no measured value can
be obtained, because the knot is embedded in the log and
invisible from outside. Each fitting degree shows that the
reconstructed image is almost equivalent to the wood
sample, except that the estimated cross-sectional area is
slightly larger than the measured value because of the edge
blur caused by reconstruction errors.

Ring structure analysis—Because the reconstructed
image of Log No. 2 shows the clearest annual growth
rings, it is chosen for analyzing the ring structure. Figure 5
shows the gray-level profile along a line passing through the
pith to the edge in the upper left area of the CT image. The x
axis stands for the ring radius, and the y axis stands for the
gray-level value. The gray-level variation is caused by the
ring structure because the density within the log cross
section exhibits significant variation. The ring structure is
composed of alternating layers of latewood and earlywood,
and latewood is composed of smaller size cells, which has a
higher density than earlywood. Because higher material
density results in higher gray-level pixel values in the CT
image and vice versa, the variation is shaped like ridge and
valley in the gray-level profile. From the gray-level profile,
the number of annual rings can be counted (n = 15), which
matches the number of rings on the log, and ring width can
be estimated by the difference value of two adjacent ring
radii.

Results and Discussion

System performance assessment

In our system as shown in Figure 2a, the X-ray source-to-
wood distance (Rz) is 566 mm, and the wood-to-detector
distance (Rp) is 391 mm. The maximum diameter of
detected wood can be calculated by the geometric

relationship shown in Figure 2a, and the magnification
factor of the wood CT system is defined by

M = (Rr + Rp)/RF (15)

The space resolution of the system can be determined by
the equivalent X-ray beam width BW physically:

[F(M — 1) +d>
BW = (16)
M
where F'is the X-ray focal spot and d is the detector pitch. In
our system, the maximum diameter of detected wood is 29.2
cm, the magnification factor is 1.7, and the space resolution
is 0.4 mm.

Data preprocessing results

To verify the effectiveness of data preprocessing methods,
the cross section of Log No. 1 was scanned, and a frame of
raw projection data was taken as an example. Figure 6a
shows a frame of raw projection data, Figure 6b shows the
corrected data after defective channels interpolation and
inconsistent response correction, and Figure 6¢ gives the line
integral projection results. Comparing Figure 6a and Figure
6b, we found that the detector inconsistence was corrected,
and the projection data were well distributed. In addition,
compensation was made for defective channels data.

Filtering effect

Filtering effect comparison—To further illustrate the
impact of different filter functions on the reconstructed
image, the cross section of Log No. 1 was reconstructed
with RL, SL, and Butterworth filter functions, respectively.
Figure 7 shows the characteristic curves of the three filters
in frequency domain. Here, the Butterworth filter’s
frequency parameter is @, = 0.1, and the filter order is N
=4. The reconstructed image quality has a great relationship
with the shape of the Butterworth filter curve, which is
determined by the frequency parameter ®. and the filter
order N (Seshadri et al. 1990, Maher 2014). The way to
determine the two parameters will be described in the
“Butterworth parameters’ determination’ section.

The reconstructed results of the log cross section using the
three filters based on the FBP algorithm are shown in Figure
8 (left to right: RL, SL, and Butterworth). The top three
pictures are the original reconstructed images (image size is
1,024 by 1,024 pixels), and the middle three pictures (image
size is 256 by 256 pixels) are the enlarged crack section of the
original reconstructed images, which can help us to compare
image quality more clearly. Comparison between the
reconstructed images by the SL filter and the RL filter shows

Table 1.—Comparison between manually measured value and reconstructed image estimated value.?

Cross section area Crack width

Crack depth Knot diameter

Sample Measure Estimate Fitting degree Measure Estimate Fitting degree Measure Estimate Fitting degree Measure Estimate Fitting degree

no.  (em’)  (em?) (%) (mm)  (mm) (%) (mm)  (mm) (*0) (mm)  (mm) (o)
1 280.5 3017 92 15 9.9 66 91 92.8 98 —
2 69.4 75.4 91 Cl:13  Cl:126 97 Cl:52  Cl:48.4 80 15.6 13.8 88
C2:15 C2:15 C2:28  C2:18.6
3 81.8 87.1 94 — — —

# C1 =Crack 1, left radial crack; C2 = Crack 2, upper right crack. The measured value is obtained by measuring the wood samples manually using a vernier
caliper, and the estimated value is obtained by converting pixel distance in a reconstructed image to wood physical size.
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Figure 5.—Gray-level variation due to the ring structure in the reconstructed image of Pinus cross section: (a) portion of the
computed tomography image; (b) the gray-level profile along a line passing through the pith to edge.

that the former one is slightly better and has less noise, but
the image by the Butterworth filter has the best quality and
shows a significant reduction in noise. Referring to the
characteristic curves of the three filters shown in Figure 7, the
Butterworth filter suppresses high-frequency contents prefer-
entially. Because most of the quantum noise in the measured
projection is high frequency in nature, noise reduction is
achieved by the Butterworth filter.

In Figure 8, the bottom three pictures are the gray-value
profiles; each picture is the gray-value profile along the
middle column of each enlarged reconstructed image.
Because the background of each reconstructed image is
constant and the gray value should be zero, we see that the
Butterworth filtering produces the best results because
intensity variations are smooth and the gray values in the
background are closer to zero. The maximum gray value in
the right profile is above 200 (by Butterworth filter), while the
maximum gray value is below 200 in the former two profiles
(by RL and SL filters). That is the reason the sapwood in the
reconstructed image by Butterworth is much brighter than the
former two reconstructed images by RL and SL filters.
Additionally, the sapwood has a higher moisture content than
the heartwood, so it appears brighter in the right CT image,
and the density contrast between sapwood and heartwood is
enhanced by means of the Butterworth filter.

Butterworth parameters’ determination—The Butter-
worth filter is adopted because of its wide range of
frequency and adjustability of frequency parameters, and
the shape of a Butterworth filter curve is determined by its
frequency parameter ®. and the filter order N. Several
groups of Butterworth filter parameters were chosen, and

their effects on reconstructed image quality were evaluated.
Here, Log No. 2 was reconstructed by Butterworth filter
function under different filter parameters. Figure 9 shows
the frequency characteristic curves of the Butterworth filter
under various parameters. Figure 10 shows the reconstruct-
ed images of the log cross section using the Butterworth
filter under various parameters.

Figure 10a refers to the filter curve shown in Figure 9a.
Under the condition that o, = 0.05 and N = 4, the filter
frequency curve is too sharp, and the loss of the high-
frequency component leads to an image blurring effect (left
image). Under the condition that w. = 0.3 and N = 4, the
filter curve is smooth, but the high-frequency section is too
high; the reconstructed image has a clear edge, but it is not
smooth and too noisy (right image). When ®.=0.1 and N=
4, the filter curve rises smoothly, and the high frequency
approaches zero; the reconstructed image has sharp details
such as clear annual rings, outer edge, and cracks, while the
high-frequency noise is suppressed (middle image). Figure
10b refers to the filter curve shown in Figure 9b, and the
similar analytical method is applied. The Butterworth filter
with lower order causes image noise (left image), while
higher order causes an image partial blurring effect (right
image). Therefore, the Butterworth filter with the fourth
filter order and the cutoff frequency ®. = 0.1 is the best,
providing clear internal structures with low noise.

In general, we can conclude that the reconstructed image
quality is closely related with the shape of the Butterworth
filter’s characteristic curve, which is determined by the two
parameters. In addition, if the proper frequency parameter
and filter order are chosen, it is possible to eliminate the
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Figure 6.—Preprocessing results of a frame of detector projection data: (a) raw projection data; (b) corrected projection data; and (c)

line integral projection data.
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Figure 7.—Characteristic curves of Ram-Lak, Shepp-Logan,
and Butterworth filters in frequency domain.

high-frequency noise and modify the noise characteristics of
reconstructed images, simultaneously achieving a desired
compromise between spatial resolution and image noise. For
example, the fine details such as wood edge, annual rings,
internal cracks, and knots can be enhanced, while the image
noise and blurring effect can be suppressed.

Conclusions

In this article, a wood CT imaging system was developed,
and an improved FBP algorithm specialized for wood cross
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section CT image reconstruction was proposed. The system
could be used for log scanning as well as lumber or plywood
scanning, providing economical equipment support for
nondestructive wood testing.

Wood was scanned by an X-ray source, and the
penetrated X-ray intensity data were captured by an X-ray
detector. The detector’s projection data were preprocessed
prior to image reconstruction. The preprocessed results
showed that detector inconsistence was corrected, scanning
data were well distributed, and defective channels data were
compensated for.

The FBP algorithm was described, and the Butterworth
filter was designed to deal with image blurring problems
when projection data were noisy. A piece of the cylindrical
log’s cross section was reconstructed by FBP algorithm
using RL, SL, and Butterworth filters; the results illustrated
that the reconstructed image by Butterworth filter had the
best quality and achieved a desired compromise between
spatial resolution and image noise. The frequency param-
eter and filter order of the Butterworth filter were
determined, and a piece of a small diameter log’s cross
section was reconstructed by the Butterworth filter under
various filter parameters. The results revealed that the
Butterworth filter with fourth filter order and cutoff
frequency ®. = 0.1 is the best, providing clear internal
structures with low noise.

Gray value
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Figure 8—Reconstructed results of the log cross section using three filters based on the filtered back-projection algorithm, by (left to
right) Ram-Lak, Shepp-Logan, and Butterworth filters, respectively. (Top row) Original reconstructed images; (middle row) enlarged
crack part of original reconstructed images; (bottom row) intensity profiles of the middle column of enlarged images.
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Figure 9.—Frequency characteristic curves of Butterworth filter under various parameters: (a) different cutoff frequency parameter
¢ (0= 0.05, 0.1, 0.3) with the same filter order N (N = 4); (b) the same cutoff frequency parameter o (.= 0.1) but different filter

order N (N = 2, 4, 8).

The proposed algorithm was adopted to reconstruct
wood cross-sectional images from the X-ray projections.
Two pieces of cylindrical log and a block of laminated
timber were scanned and reconstructed, and the recon-
structed images clearly revealed the wood cross section’s
outer edge and internal structures such as pith, cracks,
knots, and growth rings. In the wood science field, the

reconstructed image quality of our system could meet
researchers’ requirements for detecting wood internal
structures. In wood industrial settings, our system can
provide exact internal defect information for both logs and
lumber, which could help wood producers accurately grade
lumber, enabling them to more closely estimate lumber
value.

Figure 10.—Reconstructed images of the log cross section by Butterworth filter under various parameters shown in Figure 9. (a)
Reconstructed results by Butterworth filter under different cutoff frequency parameter with the same filter order: (left) .= 0.05, N=
4; (middle) .= 0.1, N = 4; (right) o. = 0.3, N = 4. (b) Reconstructed results by Butterworth filter under the same cutoff frequency
parameter but different filter order: (left) w. = 0.1, N = 2; (middle) v, = 0.1, N = 4; (right) v, = 0.1, N = 8.
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