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Abstract
Predictive boosted regression tree (BRT) models were developed to predict modulus of rupture (MOR) and internal bond

(IB) for a US particleboard manufacturer. The temporal process data consisted of 4,307 records and spanned the time frame
from March 2009 to June 2010. This study builds on previous published research by developing BRT models across all
product types of MOR and IB produced by the particleboard manufacturer. A total of 189 continuous variables from the
process line were used as possible predictor variables. BRT model comparisons were made using the root mean squared error
for prediction (RMSEP) and the RMSEP relative to the mean of the response variable as a percent (RMSEP%) for the
validation data sets. For MOR, RMSEP values ranged from 1.051 to 1.443 MPa, and RMSEP% values ranged from 8.5 to
11.6 percent. For IB, RMSEP values ranged from 0.074 to 0.108 MPa, and RMSEP% values ranged from 12.7 to 18.6
percent. BRT models for MOR and IB predicted better than respective regression tree models without boosting. For MOR,
key predictors in the BRT models were related to ‘‘pressing temperature zones,’’ ‘‘thickness of pressing,’’ and ‘‘pressing
pressure.’’ For IB, key predictors in the BRT models were related to ‘‘thickness of pressing.’’ The BRT predictive models
offer manufacturers an opportunity to improve the understanding of processes and be more predictive in the outcomes of
product quality attributes. This may help manufacturers reduce rework and scrap and also improve production efficiencies by
avoiding unnecessarily high operating targets.

The forest products industry is an important contributor
to the US economy; its products account for approximately
4 percent of the total US manufacturing gross domestic
product, placing it on par with the automotive and plastics
industries (American Forest and Paper Association 2014).
The industry generates more than $210 billion per year in
sales and employs approximately 900,000 people earning
$50 billion in annual payroll, making it one of the top 10
manufacturing employers across 42 states (American Forest
and Paper Association 2014).

Sustaining business competitiveness by reducing costs
and maintaining product quality is essential for this industry.
A key challenge facing this industry is to continually
improve its understanding of process variables and their
relationship with final product quality attributes. Quantify-
ing the relationships between process variables (line speed,
press temperature, etc.) and final product quality attributes
(internal bond [IB], modulus of rupture [MOR], etc.) while
predicting strength properties was the goal of this study.

MOR in bending is the maximum fiber stress at failure.

Tensile strength perpendicular to the surface is used as a

measure of the IB of particleboard.

The delay between the time at which a test sample is

taken at the output end of the production line and the time at
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which the strength characteristics of this sample (e.g., IB)
have been determined in a testing laboratory is also
important. This delay can be as long as 1 to 3 hours in
particleboard. In the absence of a real-time model that
predicts mechanical properties, it is difficult to optimize
production and correct for possible poor mechanical
properties of the final manufactured product. Boosted
regression tree (BRT) models in real-time settings may
offer wood composite manufacturers a competitive advan-
tage for improving production efficiency, avoiding waste,
and avoiding higher-than-necessary operating targets.

A host of regression techniques offers a means for
explorative correlation analyses and possible prediction of
product properties to overcome this shortcoming of time
gaps between destructive samples from the production line.
The regression techniques are well documented in the
published literature (Young 1996; Cook and Chiu 1997;
Bernardy and Scherff 1998; Greubel 1999; Cook et al. 2000;
Eriksson et al. 2000; Young and Guess 2002; Sjöblom et al.
2004; Young et al. 2004, 2008, 2014; Lei et al. 2005; Xing
et al. 2007; André et al. 2008; Clapp et al. 2008; Mora and
Schimleck 2010; André and Young 2013; Riegler et al.
2013).

BRTs constitute a data mining technique that has had
considerable success in predictive modeling. As Schonlan
(2005) noted, boosting is a highly flexible regression tree
method that allows the researcher to specify the independent
variables without specifying the functional relationship to
the response. Schonlan (2005) further notes that this
flexibility of BRT models will tend to fit better than a
linear model, resulting in improved inference and credit-
ability. The BRT technique draws on insights and
techniques from both statistical and machine learning
traditions to enhance the predictive power of regression
trees (Hastie et al. 2009). Improved prediction using BRT
models can help minimize the risk of producing hours of
defective or off-grade product or hours of production that
are unnecessarily overengineered and of higher cost.
Predictive models using BRT can also reduce the costs
associated with rework (i.e., remanufactured panels due to
poor strength properties), reduce feedstock costs (e.g., resin
and wood), reduce energy usage, and improve wood
utilization from the valuable forest resource. Improving
production efficiency and overall business competitiveness
for the wood composites industry was the rationale and
motivation to support this work. The authors are not aware
of literature documenting the use of BRT in wood
composites manufacture.

‘‘Trees’’1 or regression trees are the fundamental
precursor to BRTs, and the methodologies have roots in
both statistics and computer science. A precursor to current
tree methodology was CHAID, developed by Morgan and
Sonquist (1963).2 Breiman et al. (1984) first introduced the

main ideas of tree methodology to statistics. Hastie et al.
(2009) also described decision trees from a statistical
perspective. In their most fundamental form, tree-based
methods partition the predictor space into rectangular
regions using a series of rules to identify regions having
the most homogeneous responses to the predictors and then
fit a constant or a relatively simple regression model to the
data in each partition (Bishop 2006, Loh 2008). The
growing of a tree involves recursive binary splits, meaning
that a binary split is continually applied to its own output
until a stopping specification is obtained. Decision trees are
well liked because they represent information that is innate
and easy to visualize and identify prioritized interactions.

A regression tree is a piecewise linear estimate of a
regression function that is constructed by the recursive
partitioning of the data and the sample space (Loh 2002).
The construction of a regression tree generally consists of
the following four steps performed iteratively: (1) partition
the data, (2) fit a model to the data after each partition, (3)
stop when the residuals of the model are approximately zero
or when there are only a few observations left, and (4) prune
the tree (i.e., if the tree overfits). Even though the two-
dimensional hierarchical interactions displayed by regres-
sion trees provide very good explanatory value, a limitation
of regression trees without any type of boosting is poor
predictive power (Hastie et al. 2009).

Boosting is a technique used to enhance the predictive
performance of regression trees. As Elith et al. (2008) noted
in citing Schapire (2003), ‘‘Succinctly, boosting is a method
for improving the accuracy of a model, based on the simple
idea that it is easier to find and average many rough rules of
thumb, than to find a single, highly accurate prediction
rule.’’ A weak learner (also known as a base classifier or
weak classifier) is one whose error rate is only slightly better
than random guessing. The main point of boosting is to
sequentially apply the weak learning algorithm to repeatedly
modified versions of the data, hence creating a sequence of
weak learners. In boosting, models are fit iteratively to the
training data using methods to increase emphasis on
observations that are modeled poorly by the existing
collection of models (Elith et al. 2008).

The original design for boosting made it specific to
classification problems, but it can be ‘‘profitably extended to
regression’’ as well (Hastie et al. 2009). As related to
regression problems, boosting is a form of functional gradient
descent (Elith et al. 2008). Take a loss function that
represents the loss in predictive performance owing to a
suboptimal model. Boosting is a numerical optimization
technique for minimizing the loss function by adding, at each
step, a new model (e.g., a regression tree) that best reduces, or
steps down, the gradient of the loss function (Elith et al.
2008). According to Elith et al. (2008), in a BRT, the initial
regression tree is the one that reduces the loss function the
most. At each iteration, the focus is on the residuals and root
mean square error of prediction (RMSEP) reduction.31 ‘‘Tree’’ or ‘‘trees’’ in this article refers to the methodology of

decision trees, of which regression trees are a subset when
modeling measurement data. A regression tree is a piecewise
constant or piecewise linear estimate of a regression function,
constructed by recursively partitioning the data and sample space.
Its name derives from the practice of displaying the partitions as a
decision tree, from which the significance of the regressors is
inferred.

2 Refer to Quinlan (1993) for an overview of how tree methodology
was developed in machine learning.

3 RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðyi�ŷiÞ2

n

r
, where yi is the observed value, ŷi is the

predicted value, and n is the total number of records in the
validation data set. RMSEP%¼ (RMSEP/l̂y) 3 100%, where l̂y is
the mean of the observed response values in the validation data set.
The use of l̂y allowed for easier comparison of each BRT model to
a similar baseline.
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Also according to Elith et al. (2008), in the second step, a
regression tree, which can contain different variables and
split points from the first tree, is fit to the prediction
residuals of the first tree. The overall model now contains
two trees, and the residuals from this two-term model are
estimated. The process is stagewise, i.e., existing trees are
left unchanged as the model grows increasingly larger. Only
the fitted value for each observation is reestimated at each
step to reflect the contribution of the newly added tree. In
the end, the final BRT model is a linear combination of
numerous trees and can be thought of as a regression model
with each term being a tree.

This study is aligned with Gleser’s (1996) ‘‘First Law of
Applied Statistics’’ principle that two individuals using the
same statistical method on the same data should arrive at the
same conclusion. The objectives of this study were (1) to
quantify the correlations of strength properties of particle-
board and process parameters from a manufacturing data set
by use of BRTs and (2) to assess the predictions of strength
properties of particleboard by use of BRTs. The specific
method of stochastic gradient boosting was used in this
study to model the strength properties of particleboard.

Methods

Stochastic gradient boosting

Stochastic gradient boosting is one loss function algo-
rithm for BRT and was used in this study. Friedman (2002)
stated that ‘‘gradient boosting constructs additive regression
models by sequentially fitting a simple parameterized
function (i.e., base learner) to current ‘pseudo’-residuals
by least-squares at each iteration.’’

In the function estimation problem, one has a response
variable y and a set of random explanatory values. X ¼
{x1, . . . , xn} Friedman (2002) noted that given a training
sample fyi;X igN

1 of known (y, X) values, the objective is to
find a function F*(x) that maps X onto y such that over the
joint distribution of all (y, X) values, the expected value of
some loss function W(y,F(x)) is minimized:

F*ðX Þ ¼ arg min
FðX Þ

Ey;X W
�

y;FðXÞ
�

ð1Þ

Boosting approximates F*(x) by an additive expansion of
the form

FðX Þ ¼
XM
m¼0

bmhðX; amÞ ð2Þ

where functions h(X;a) (i.e., ‘‘base learner’’) are generally
simple functions of X with parameters a¼ {a1,a2, . . .} In a
forward stagewise manner, the expansion coefficients bm

and the parameters am are jointly fit to the training data.
According to Friedman (2002), one starts with a preliminary
guess F0(X),and then for m ¼ 1, 2, . . . , M iterations,

ðbm; amÞ ¼ arg min
b;a

XN

i¼1

W yi;Fm�1

�
Xi þ bhðX; aÞ

�h i
ð3Þ

and

FmðXÞ ¼ Fm�1ðXÞ þ bmðX; amÞ ð4Þ
where yi is the response of interest and Fm(X) is the final
BRT.

Software and learning parameters used
for the study

Statistica 10 (http://www.statsoft.com ) software was
used in this study to estimate the BRT models. The BRT
algorithm of Statistica 10 is a ‘‘full featured implementation
of the stochastic gradient boosting method.’’ Five key
parameters used to control the stochastic gradient boosting
algorithm were manipulated in the BRT analysis. These
criteria represented the optimization criteria for the BRT
models:

� First, the ‘‘learning rate,’’ or the shrinkage parameter (lr),
specified the specific weight with which consecutive
simple regression trees are added into the prediction
equation; that is, lr specified the shrinkage applied to each
tree in the final BRT model (Elith et al. 2008). For
example, a BRT model with 500 trees fitted and with lr¼
0.01 will produce predictions that are the sum of
predictions from each of the 500 trees multiplied by
0.01 (compare, e.g., Figs. 1 and 2, where lr varies from
0.005 to 0.5).

� Second, the ‘‘number of additive terms’’ (nat) specified
the number of simple regression trees (i.e., additive
terms) to be computed in successive boosting steps.
According to Elith et al. (2008), a smaller lr and larger
nat are preferable. Because smaller values for lr (i.e.,
more shrinkage) result in larger training risk for the
same nat, both lr and nat control the prediction risk on
the training data. We used nat values of 100, 200, 300,
400, 500, 600, and 1,000, respectively, given prior
experience from preliminary runs using the stochastic
gradient boosting. Training risk minimizes the average
value of the loss function on the training set. Training
risk is necessary for BRT models to avoid model
overfitting, which is a consequence of regression trees
or BRT, which are known to be ‘‘greedy’’ algorithms.

� Third, the ‘‘maximum number of nodes’’ (mnn) specified
the maximum number of nodes allowed for each
individual tree in the boosting sequence. This is a
stopping parameter in the sense that each time a parent
node is split, the total number of nodes in the tree is
examined, and the splitting is stopped if this number
exceeds the number specified by mnn. Stopping param-
eters are a key element of regression trees in general in
that tree algorithms will tend to overfit the model. The
stopping parameter defines the ending point of tree.
Setting mnn ¼ 3 produces BRFT models with only main
effects. Setting mnn ¼ 5 produced models with main
effects and two-variable interactions. In this study, mnn¼
3 and 5 was used.4

� Fourth, the ‘‘subsample proportion’’ (sp) was used for
selecting the random learning sample for consecutive
boosting steps. Given two prior works documented in the
literature (Elith et al. 2008, Hastie et al. 2009), sp ¼ 0.5
was used in this study. This literature suggested a
balanced sp ¼ 0.5 to avoid overfitting of the fraction
subsample, which may occur if sp is too great.

One hundred forty BRT models were the product of
testing 10 different levels of lr values (ranging from 0.005 to
0.5), two levels of mnn values (3 and 5), and seven different

4 As noted by Elith et al. (2008), BRT regularization involved jointly
optimizing nat, lr, and mnn.
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levels of nat values (ranging from 100 to 1,000). The
parameter settings for the best BRT model for MOR were lr
¼ 0.15, mnn¼ 3, and nat¼ 1,000. Importantly, the optimal
number of trees obtained for these 1,000 iterations was 943
three-node trees (i.e., the smallest average squared error for
the validation sample was obtained at 943 trees for these
1,000 boosting steps).

In the BRT model development, 3,449 (80% of the entire
data set) randomly selected records were used for the
training models, and 858 (remaining 20%) were used for
validation. To compare the predictive abilities of the BRT
models, RMSEP and RMSEP% were used as performance
measures in validation.

Data set

A time-ordered data set was obtained from a particle-
board manufacturer with a continuous press in the United
States. The key quality strength metrics, or response
variables for this manufacturer’s product, were MOR and
IB. As is typical for particleboard manufacturing, destruc-
tive test samples were taken from the production at irregular
time intervals that varied from 1 to 2 hours or as product
type changed. The data set consisted of 4,307 records that
spanned the time period from March 2009 to June 2010.
There were an equal number of samples for MOR and IB as
specified by the manufacturer’s sampling protocol. There
were 189 possible continuous predictor variables. The
predictor variables in this study represented mat forming,
mat weight, mat temperature, line speed, pressing temper-
atures, pressing pressures, etc. Specific detail concerning the
predictor variables is not possible given the terms of a
confidentiality agreement with the manufacturer. The data
of the predictor variables represented a fused data set from a
study by Young et al. (2014). The fused data set of strength
properties and process parameters accounted for appropriate
time lags in the process parameters as related to the time of
destructive testing sampling, i.e., fiber passes under sensors
of the process at different times relative to the time the
panels exits the press. Process parameter data were obtained

from the process data warehouse and represented a median
value of 25 programmable logic controllers (PLC) data
samples. The PLC data were sampled from the sensors
every 5 seconds. Outliers that represented sensor failure or
production line downtime were not included in the data
samples.

There were 118 different particleboard product types
manufactured by the producer within the 4,307 records.
Product types were not differentiated in the overall BRT
model predictions of MOR and IB. A holistic BRT model
for all product types seems more plausible and practical for
the manufacturer than attempting to develop distinct models
for 118 different product types with different record lengths.

Results and Discussion

MOR predictions

Figures 1 and 2 illustrate the range of RMSEP% values
for MOR resulting from BRT models with various
combinations of BRT modeling parameters. The RMSEP
for this BRT model of MOR was 1.051 MPa. The RMSEP%
for this BRT model of MOR was 8.5 percent. The lowest
RMSEP% occurred for the largest number of regression
trees (nat¼1,000) using three- and five-node trees (mnn¼3,
mnn¼ 5). For three-node trees, convergence occurred at an
lr of 0.15 and diverged at lr . 0.15 for the regression trees
of nat ¼ 1,000. Five-node trees tended to converge at lr ¼
0.5. As with the three-node tree, nat¼ 1,000 had the lowest
RMSEP%. The results illustrated in Figures 1 and 2 appear
to support the BRT concept that ‘‘combining many weak
learners forms a stronger one for prediction,’’ as noted by
Schapire (2003). Figures 1 and 2 for MOR also illustrate
that larger trees outperform (lower RMSEP%) for lr , 0.2
where mnn ¼ 3 and for lr , 0.1 where mnn ¼ 5. The
correlation between the observed values and the predicted
values in the validation data set was r ¼ 0.91, and the XY
scatterplot does not reveal any inherent bias in the validation
set (Fig. 3). Two distinct groupings in Figure 3 reveal the
strength of MOR targets by manufacturer product types.

Figure 1.—The relationship between learning rate (lr) and
modulus of rupture (MOR) root mean squared error for
prediction (RMSEP) and the RMSEP relative to the mean of
the response variable as a percent (RMSEP%) for the 70
different boosted regression tree models with seven values
chosen for the number of additive terms (nat) and a value of 3
chosen for the maximum number of nodes (mnn).

Figure 2.—The relationship between learning rate (lr) and
modulus of rupture (MOR) root mean squared error for
prediction (RMSEP) and the RMSEP relative to the mean of
the response variable as a percent (RMSEP%) for the 70
different boosted regression tree models with seven values
chosen for the number of additive terms (nat) and a value of 5
chosen for the maximum number of nodes (mnn).
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More detail on product types is not possible given the
confidentiality agreement of study.

For MOR, key predictors in the models related to
particleboard were dominated by press-related parameters
such as ‘‘pressing temperature zones within the press,’’
‘‘thickness of pressing by press zone,’’ and ‘‘pressing
pressure by press zone.’’ This may be the result of the
influence of a continuous press in manufacturing particle-
board. There were multiple heating, pressure, and thickness
zones in a series common to most continuous presses.
Manufacturers with continuous presses have confidential
pressing strategies as related to the type, brand, and length
of the continuous press. More detail on predictor variables is
not presented given the confidentiality agreement with the
manufacturer.

For the sake of comparison, a regression tree model
without boosting was fit to the same data. The regression

tree without boosting had a higher RMSEP (1.263 MPa) and
RMSEP% (10.2%).5 The r ¼ 0.87 between the observed
values and the predicted values in validation was quite high
but was misleading given the XY scatterplot of these values
(Fig. 4). The predictive weakness of regression trees without
boosting (i.e., fitting a mean, etc., to each binary split) is
shown in Figure 4.

Predictions of IB

The loss function of the RMSEP% for IB using the same
BRT modeling parameter combinations discussed above are
given in Figures 5 and 6. The BRT parameter settings for
the lowest RMSEP% were lr ¼ 0.1, mnn ¼ 5, and nat
¼1,000. The optimal number of trees obtained for these
1,000 iterations was 957. This again strengthens the
argument by Schapire (2003) that combining many weak
learners has better predictability relative to one tree.
Convergence for the IB strength property was similar to
MOR and occurred for the largest number of regression
trees (nat¼1,000) using three- and five-node trees (mnn¼3,
mnn ¼ 5). However, relative to MOR and IB, convergence
occurred at a lower lr of 0.10 for mnn¼ 3 and an lr of 0.05
for mnn¼ 5. Figures 5 and 6 for MOR further illustrate that
larger trees provide the best predictability.

IB was more difficult to predict than MOR. IB had an
RMSEP¼ 0.074 MPa and an RMSEP%¼ 12.7 percent. The
correlation between the observed values and the predicted
values in validation was r¼ 0.86 and did not have bias (Fig.
7). The IB results using the BRT method have higher overall
RMSEP in validation compared with the studies by Riegler
et al. (2013) for high-density fiberboard (HDF) and André et
al. (2008) for medium-density fiberboard (MDF), where
principal components analysis and partial least squares
methods were used. However, the overall data sets of these
studies for HDF and MDF were approximately one-tenth the
size of the data set of this study. The validation data set of

Figure 3.—Scatterplot of the observed values versus the
predicted values for the boosted regression tree model that
best predicts modulus of rupture (MOR).

Figure 4.—Scatterplot of the observed values versus the
predicted values for the regression tree model without boosting
that predicts modulus of rupture (MOR).

Figure 5.—The relationship between learning rate (lr) and
internal bond root mean squared error for prediction relative to
the mean of the response variable as a percent (RMSEP%) for
the 70 different boosted regression tree models with seven
values chosen for the number of additive terms (nat) and a
value of 3 chosen for the maximum number of nodes (mnn).

5 The independent variables in the regression tree model in Figure 4
were nondescriptive given the confidentiality requests from the
company supplying the data.
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Riegler et al. (2013) was extremely small, and this may
affect the overall repeatability and robustness of his models.
The coefficient of variation (CV; 7.1%) for the HDF IB data
of Riegler et al. (2013) was also substantially smaller than
the CV (24.6%) for the IB data from the manufacturer of
this study, indicating that the particleboard process of this
study had more inherent natural variation than the HDF mill
used by Riegler et al. (2013). The validation data set of
André et al. (2008) was also substantially smaller than that
of this study.

For IB, the predictors occurring most often in the BRT
models were related to ‘‘thickness of pressing’’ in the zones
of continuous press. As with MOR, more detail on predictor
variables is not possible given the confidentiality agreement
with the manufacturer.

BRT models predicted MOR more accurately than IB,
which had more inherent process variation (CV ¼ 24.6%)

for the particleboard manufacturer than did MOR (CV ¼
19.8%). This may represent one explanation for the
difficulty in predicting IB using BRT models. The higher
natural variation of IB relative to MOR may also be inherent
to the higher potential for error associated with the standard
test method for IB (ASTM International 2013); great care
must be taken with regard to proper IB test sample
preparation, the conditions of the blocks, the bonding
quality between the blocks, etc. However, sample error data
were not available in the data set, and there was nothing
from personal observation of the destructive testing process
to indicate that the particleboard manufacturer had an
atypical IB testing methodology.

A key result of this study was the ability to use BRT
models for predictive models for all 118 product types
produced by the manufacturer across 16 months of
production data (n ¼ 4,307). Earlier modeling studies
conducted for strength quality metrics of wood composites
used much smaller training data sets and did not model
multiple product types (André et al. 2008, Clapp et al.
2008). As computational power inevitably increases in the
manufacturing sector, it is highly likely that future,
expansive applications of BRT modeling will increase in
application.

Conclusions

BRTs are a relatively new predictive modeling technique
that draw on insights and techniques from both statistical
and machine learning traditions by combining boosting
algorithms with regression trees. BRT models have the
ability to select pertinent variables, fit accurate functions,
and model interactions. In this study, the boosting regression
tree approach had better predictability in validation
compared with regression tree methods without boosting.

As documented in this study, BRT predictive models may
offer manufacturers a valuable tool for predicting product
quality in real time, and this may in turn lower manufac-
turing costs by avoiding scrap and improving operational
efficiency. BRT models in real-time settings may further
help manufacturers avoid higher-than-necessary operating
targets given improved predictability of final strength
properties.
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Sjöblom, E., B. Johnsson, and H. Sundström. 2004. Optimization of

particleboard production using NIR spectroscopy and multivariate

techniques. Forest Prod. J. 54(6):71–75.

Xing, C., S. Y. Zhang, J. Deng, and S. Q. Wang. 2007. Investigation of

the effects of bark fiber as core material and its resin content on three-

layer MDF performance by response surface methodology. Wood Sci.

Technol. 41(7):585–595.

Young, T. M. 1996. Process improvement through ‘‘real-time’’ statistical

process control in MDF manufacture. In: Proceedings of Process and

Business Technologies for the Forest Products Industry, July 29–31,

1996, Madison, Wisconsin; Forest Products Society, Madison,

Wisconsin. pp. 50–51.
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