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Abstract

Composite sampling is standard practice for evaluation of preservative retention levels in preservative-treated wood.
Current protocols provide an average retention value but no estimate of uncertainty. Here we describe a statistical method for
calculating uncertainty estimates using the standard sampling regime with minimal additional chemical analysis. This tool
can be used by wood treaters to generate lower prediction intervals that with a certain level of confidence give lower bounds
on preservative retention estimates for a future analysis (e.g., by a customer) indicating whether the treated wood charge

would result in a below-target retention value.

Standard practice in commercial wood treatment
operations is to evaluate the quality of treated wood by
extracting and analyzing a number of wood cores after the
treatment process is complete. For example, AWPA TI
(American Wood Protection Association [AWPA] 2012a), a
commonly used standard in the industry, specifies wood
species, preservative types, commodity details, and three
additional factors:

e assay zone, the analysis zone that extends from the
surface into the wood 5 to 100 mm, depending on the type
of wood product (commodity) and treatment type; the
assay zone is cut from the cores after they are removed
from the treated wood;

e penetration, the distance from the surface of the wood that
the chemical is present in the assay zone; and

e retention, the amount of chemical that is present in the
assay zone.

The usual number of cores specified per charge (treatment
batch) is 20, although the number can be greater for some
commodities or for wood treated with creosote. Each core is
evaluated separately (visually, often with the aid of a
colorimetric indicator) for preservative penetration; howev-
er, the cores are normally pooled for a single preservative
retention analysis. The individual wood cores are combined
and milled, and this ““‘composite’” sample is analyzed for
preservative components using specified chemical analysis
techniques, such as X-ray fluorescence (XRF) for heavy
metals such as copper (AWPA 2012b).
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The compositing of the small-diameter wood cores is
convenient because it results in an ample amount of wood
for the chemical retention analysis and because it provides
an average value that can be compared with the minimum
retention specifications listed in the relevant standard.
However, as a single measurement, no information is
provided about the variability in preservative retention that
exists from core to core, and thus no insight is gained on
within-charge treatment variation or, for example, the
likelihood that another sampling of the charge would yield
a value lower or higher than the specification. So, for
example, if a charge has a true mean retention near the
specification level, but has large underlying variation, then a
future composite sample from that charge has a greater
chance of being below the specification than if the charge
has smaller underlying variation.

Compositing is a common practice in fields where
chemical analysis may be expensive or complex. A
composite sample may be more convenient and cost-
effective, especially if properly taken and analyzed
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correctly. In the food industry, compositing can be useful
for the determination of nutritional information for food
product labeling. The Food and Drug Administration has
issued a manual on nutritional labeling that provides
guidance and recommendations on the details of the practice
for obtaining reliable nutritional data (US Food and Drug
Administration 1998). Compositing is widely used in
environmental studies and assessments, and its statistical
advantages and disadvantages have been discussed in detail
(Edland and van Belle 1994, Patil et al. 2011). Compositing
may be used in bulk sampling as part of an acceptance
sampling program for assessing quality of continuous
materials, as discussed in Schilling and Neubauer (2009).

Use and interpretation of a composite assay for
determination of a retention value for a charge of lumber
has been a part of the AWPA standards since the 1960s and
appears to have been adopted after its use for poles and piles
in an effort to convert quality control standards to “‘result-
type specifications”” (AWPA 1957, Baechler 1960, Sherman
1961). Baechler et al. (1962) and Baechler (1962) reported
on a study of the feasibility of adopting similar specifica-
tions for treated lumber; they discussed many of the factors
that can influence the gradient of treatment retention and the
relationships between crosscut zone sample measurements
and boring measurements for several types of preservative
treatments of southern pine and Douglas-fir lumber. These
studies and subsequent American Wood-Preservers’ Asso-
ciation committee discussions led to the 1966 adoption of a
composite assay sample to determine whether the retention
value of a charge was sufficient to meet the standard
specification. At that time, ‘‘samples to be taken from not
less than 20 pieces in a lot”’ became the recommendation in
the standard. Since that time the composite assay value for a
particular charge of lumber has been used to determine
quality compliance both internally by treating plants and
externally by third-party testing agencies (AWPA 1963,
1964, 1965, 1966).

More recently, Kleinknecht (1999) discussed in detail the
different types of variability that can influence treated wood
penetration and retention values and their impact on quality
testing. Lebow and Conklin (2012) further discussed the
statistical aspects of compositing on interpreting wood
retention assay values. The use and interpretation of a
composite retention value for understanding charge quality
within the AWPA standards has seen recent activity (AWPA
2015). Although additional effort would be required, creating
multiple composite samples from a single charge would
provide a measure of variability. Statistical analysis will
provide a greater level of confidence that the true retention of
a charge meets the specification. This may reduce the number
of samples for subsequent inspections of the charge.

Statistical techniques exist that can estimate variability of
a population based on the values of a few composite
subsamples (Edland and van Belle 1994, Patil et al. 2011).
The purpose of this study was to develop a statistical tool for
wood-treating plant operators that would allow them to
estimate treatment retention variability within a charge and,
with minimal extra work, construct a lower bound
prediction interval for a future observed composite mean
from that charge. Specifically, by separately pooling,
grinding, and analyzing a few groups from the normal 20
cores, they could determine a lower prediction limit for a
future analysis of the charge in addition to the usual
composite average sample value. Treatment standards do
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not specify an upper limit on retention, but overtreatment is
generally avoided because it increases costs and does not
necessarily result in a commensurate increase in durability.

Hahn and Meeker (1991) discuss different types of
statistical intervals, underlying assumptions, calculation,
and interpretation of statistical intervals for practical
questions. They discuss how prediction intervals are
constructed to predict future observations and statistics
from a population (e.g., a mean) with a certain level of
confidence. They further describe confidence intervals for
describing population parameters and tolerance intervals
that describe other population characteristics. The underly-
ing distribution of a population is a key assumption that
impacts the performance of the intervals. Gibbons (1994)
discusses goodness-of-fit tests and gives further details on
prediction intervals for noncomposited measurements,
including nonnormal populations. The Shapiro-Wilk good-
ness-of-fit test for normality is a formal statistical test whose
rejection indicates that the normal distribution may not be a
suitable distribution in describing a sample, although it does
tend to reject normality if sample size is too high.
Kolmogorov-Smirnov is a general goodness-of-fit test that
looks at the distance between an empirical distribution
function based on a sample and a hypothetical distribution
function. It is not as powerful as other tests, and larger
sample sizes are recommended. The Anderson-Darling test
is a refinement of the Kolmogorov-Smirnov test that gives
more weight to the tails of the distribution and is considered
more powerful than the Kolmogorov-Smirnov test. For
detailed descriptions of goodness-of-fit tests, see National
Institute of Standards and Technology (NIST 2012),
sections 1.3.5.14, 1.3.5.16, and 7.2.1.3.

The purpose of this study was to evaluate the improved
statistical procedure for assessing treatment quality.

Materials and Methods

Analysis of commercially treated
wood samples

Thirty pressure-treated 8-foot (2.44-m)-long lumber from
the Southern Pine species group of the southeastern United
States (primarily Pinus taeda, loblolly pine) nominal 2 by 4s
were purchased from each of two different retailers in
Knoxville, Tennessee, in the summer of 2012 (60 total
boards). Each group was chosen from a single stack of
lumber, with the assumption that the lumber came from a
single treatment charge. Two different preservative treat-
ments were sampled: soluble copper azole (listed by AWPA
as CA-C; AWPA 2012c¢) and micronized copper azole, with
specified retentions shown on the end tags of 0.06 and 0.06
Ib/ft® (0.96 and 0.96 kg/m?), respectively. Copper azole is a
common wood preservative system that contains mostly
copper, either in solution or as a suspension of small
particles in the case of ““micronized” copper azole.

A 3-cm-thick cross section was cut from the center of
each piece of lumber. The cross section was sprayed with
Chrome Azurol S solution, which reacts with copper to give
a blue color and allows for a visual estimate of preservative
penetration (AWPA 2012d).

A 25-mm-long (parallel to the grain or length of the
board) by 25-mm-wide by 15-mm-deep section was cut
from the narrow face (‘‘the edge’’) of each lumber sample
for preservative retention analysis. This was adjacent to the
cross section analyzed for preservative penetration. Each
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sample was separately milled to pass through a 30 mesh
screen in a Wiley mill and analyzed for copper retention
using XRF (AWPA 2012b). The individual sections
provided enough sample to run the standard retention
analysis on a single sample. This assumes that a single 1-in’
section represented retention in the same way as a single,
smaller core does. It is recognized that this assumption may
not be precisely true, but it was required because increment
cores were too small to analyze individually, and it allowed
the statistical evaluation of the worksheet tool.

Statistical analysis of wood samples

Descriptive statistics, including mean, median, standard
deviation, and coefficient of variation, and exploratory
distributional plots (box-and-whisker plots and normal
probability plots) were calculated on the individual samples
for each treatment group, and probability values (P values) of
univariate goodness-of-fit tests for normality were evaluated
(Shapiro-Wilk, Anderson-Darling, Kolmogorov-Smirnov;
Table 1). Corrected Akaike’s information criteria (AIC,) is
a small-sample, information-based measure commonly used
for model selection and includes determining differences
between hypothesized probability distributions (Burnham and
Anderson 2002). Lower values of AIC. among the
hypothesized distributions are an indication of the best fit
distribution and were compared for other candidate distribu-
tions in Table 2. The wood sample data were then used for
testing and evaluating the proposed statistical tool.

Statistical tool

When sampling treated wood retention levels according
to the AWPA standard (AWPA 2012a), 20 cores are
composited (m = 20) to produce one retention value (Y,,),
which is often reported on charge reports. These same cores
can be grouped into n separate groups each of & cores, such
that m =n X k, with only a small amount of extra handling to
ensure there is sufficient material in each group so as to not
introduce machine measurement error (such as, four groups
of five cores each, or five groups of four cores each). Each
of the n groups would be milled and analyzed separately to
give retention values, Yy, . . ., Y,. The average of ¥y, .. .,
Y, would be identical to Y,, and could be reported as usual.

However, additional information is provided by separate-
ly analyzing n groups of k£ samples. The standard deviation
of the samples can be calculated as the square root of the
variance

From this, a prediction lower limit for a future sampling
can be calculated as

, 1 1
Px=Y—-tXS8yX —
* Y <m+n><k>

where x = (1 — a)/100 percent and

= ZL(n—]),l—ot

A lower confidence bound’s coverage is determined as
the probability that the bounded interval contains the true
parameter of interest. So a nominal coverage of 0.95 means
that 95 percent of lower confidence bounds will actually
contain the true parameter. Simulations were used to
illustrate and estimate coverage probabilities. Data from
the treated wood samples were randomly sampled (with
replacement) to provide n groups of k samples, such that m
=n X k=20, as described above. A 95 percent prediction
lower limit was calculated, random samples of 20 values
from the original data were then taken and averaged to
provide Y, and this process was repeated 10,000 times. This
allowed the evaluation of the method in the context of
distributions with the exact characteristics of our observed
samples. The tool (method) was further evaluated based on
simulations of samples from normal theoretical distributions
with the estimated sample characteristics as the normal
population parameters. Actual coverage probabilities from
the simulations are given in Table 3. Example R-code is
available from the authors.

The spreadsheet tool does allow for some flexibility for
situations where the testing may be on a different number of
cores than is expected to be used in the future composite
(i.e., k X n # m). In this case, the formulas are the same. The
spreadsheet is available from the authors.

Results and Discussion

Copper penetration in the treated lumber was generally
good for the lumber treated with copper azole and
micronized copper azole, except in areas where imperme-
able heartwood or knots were close to the surface (Fig. 1).
AWPA Standard T1 (AWPA 2012a) requires penetration for
southern pine 2 by 4 lumber to be a minimum of 63 mm (2.5
in.) or 85 percent of the sapwood depth in at least 80 percent
of the pieces sampled. Penetration of heartwood is not
required.

Copper retention was close to the specified value on
average but variable (Fig. 2; Table 1). With the exception of
micronized copper, these data suggest normal distributions
are reasonable assumptions for preservative retention (Fig.
3; Tables 1 and 2). Table 2 provides further information on
the ability of other statistical distributions to characterize the

Table 1.—Characteristics of individual cores from commercial lumber from single charges in Tennessee.

Copper retention

Tests of normality (P value)

Mean, Ib/ft'  Median, 1b/ft’ SD, Ib/ft’

Treatment group n (kg/m®) (kg/m®) (kg/m®) CV (%)*  Shapiro-Wilk  Kolmogorov-Smirnov  Anderson-Darling
Copper azole 30 0.052(0.833) 0.051 (0.815)  0.0140 (0.2243) 27 >0.25 >0.15 >0.25
Micronized copper

azole (LCA) 30  0.058 (0.929) 0.052 (0.828)  0.0288 (0.4613) 50 <0.0001 <0.01 <0.005
nuCA without outlier 29  0.054 (0.865)  0.052 (0.825)  0.0160 (0.2563) 30 >0.15 >0.15 0.12

# CV = coefficient of variation.
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Table 2—Corrected Akaike’s information criteria (AIC,) for
selected statistical distributions (normal, lognormal, Weibull,
gamma).

Treatment AlC Minimum AIC,
group Normal Lognormal Weibull Gamma  distribution®

Copper azole —167.55 —151.95 —167.27 —159.13  Normal
Micronized

copper azole

(uCA) —12429 —142.71 —130.40 —139.31 Lognormal
HCA without

outlier —15424 —15193 —153.42 —153.89 Normal

# For each treatment group, distributions with an AIC, that is a reasonable
distance to the minimum AIC, for that group, say AAIC. = AIC, —
min(AIC,) < 2, may also be considered good candidates (Burnham and
Anderson 2002).

retentions as measured by AIC.. Neither the normal,
lognormal, Weibull, nor gamma distributions provided good
fits for the micronized copper group (Anderson-Darling P
values < 0.01), although based on the lowest AIC,, the
lognormal distribution appeared to better describe the
distribution. However, removal of an outlier in the
micronized copper group indicated that normality would
otherwise be a reasonable assumption for this group. The

Table 3.—Coverage probabilities from simulation study for
distributions with exact characteristics of observed samples
(discrete) and normal distributions with characteristics of
samples (means and standard deviations from Table 1).

Treatment group Discrete distribution Normal distribution

Copper azole 0.9381 0.9503
Micronized copper azole (LCA) 0.9829 0.9538
UCA without outlier 0.9582 0.9498

lognormal distribution did not provide a good fit for the
other data, but among the selected distributions, it appeared
to better characterize the micronized copper group when
including the outlier. If an outlier is suspected and the cause
for its difference from other observations cannot be
determined, it is generally recommended to include the
observation but to evaluate procedures both with and
without the outlier to determine the implications of its
inclusion/exclusion. See NIST (2012), section 1.3.5.17,
“Detection of Outliers,”” for a detailed discussion on
outliers.

In theory, under the assumption of normality and because
samples are not exhaustive, an average value that is equal to
the target value means that half the samples (cores, in the
case of treated wood sampling) would typically be below

Figure 1.—Copper penetration in treated wood samples. Blue color indicates copper in wood treated with (left) copper azole and
(right) micronized copper azole.
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Figure 2—Box plots of copper retention values as determined by X-ray fluorescence. Copsper azole mean = 0.052 Ib/ft® (0.833 kg/
30; micronized copper azole mean = 0.058 Ib/ft® (0.929 kg/m°), CV = 50 percent, n = 30; micronized
copper azole without outlier mean = 0.054 Ib/ft> (0.865 kg/m°®), CV = 30 percent, n = 29. Means are marked with plus signs.
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Figure 3.—Normal probability plots (with 95% confidence intervals) of copper retention values as determined by X-ray fluorescence.
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spreadsheet for composite sampling_052314.xlsx - Microsoft Excel

Page Layout Formulas Data Review View

| Total number of cores
[Total number of ¢ P
Retention values by XRF for each subsample

The user entersthisdata.
Enter only as many XRF
valuesasyou have. Leave
the other spaces blank.

of cores in the future composite
Based on this set of samples,

The average retention is

The lower 95% prediction limit is

The lower 90% prediction limit is

These valuesare calculated.
Don't enterdata here

A 95% lower prediction limit means that if you
repeated the sampling 100 times (taking
measurements on groups of composited
subsamples), a single future composite mean
composed of cell C13 cores would be less than
that limit only about 5 out of 100 times (or
about 1 time in 20)

The above assumes the same size of cores will
be used for composites above and for the
future single composite, but that the number
of those cores may different.

User information Background calculations raw data from actual wood

Developer  Add-Ins

5 ; General 4|

$ ~ % v | %3 ;% | Conditional Format Cell
N "d Formatting

X AutoSum ~ %T @a

Sort & Find &

5 cores ground for each XRF analysis)

The core sectionsina group should be ground and
analyzed by XRF separately.

You can vary the number of XRF samples based on the
assay zone, ie. for poles one core provides more wood,
s0 youmay be able to have 10 XRF samples of 2 cores
each. Forlumber, you may need to group more core
samplestogetherintoasingle XRF sample.

You can enter separate values for copper, chrome, etc.
or percents, as long as they are all the same type
measurement. This spread sheet just does the
statistical analysis.

EBmm 100x ©

Figure 4.—lllustration of statistical tool to provide a lower confidence bound on a future composite sample. (Example is based on a

target retention of 0.60 Ib/ff’.)

the target, but because the standard is based on the average
value for the composite sample, this variability is not of
concern directly to the treater; a composite sample value at
or above the specification would ‘‘pass.” However, theory
also suggests that a random resampling (e.g., by a customer)
of the same charge will, by chance, produce a value below
the target some of the time because of variation among the
individual poles or lumber pieces within the charge and the
limited sampling process. This suggests that looking at a
lower bound of a prediction interval for a single future
composite value, as given above by Px, which with some
degree of confidence will contain the future composite
value, would be of interest to a treater.

We developed a spreadsheet that automates the calcula-
tion of this lower bound of prediction when cores have been
composited in groups by the treater (see Fig. 4 for an
example screen shot). For example, a certain number of
cores (20 in this case; cell Cl) are composited into four
separate groups (cell C2), which are then analyzed
separately (e.g., if the cores were obtained randomly, then
cores 1 to 5 go into one sample, cores 6 to 10 go into another
sample, cores 11 to 15 go into another sample, and cores 16
to 20 go into the last sample). The user enters the retention
values for each composited sample (cells C3 to Co6).
Background calculations then provide the average retention
values and the calculated lower prediction bounds. The total
number of samples (cores) taken and the number of
composite groups used can be adjusted by the user as long
as the appropriate values are entered in the spreadsheet.

FOREST PRODUCTS JOURNAL VoL. 65, No. 5/6

Random sampling of 20 retention data values from our
observed assay samples produced a composite average value
below the lower prediction bound only 6, 2, and 4 percent of
the time for copper azole, micronized copper azole, and
micronized copper azole (without the outlier), respectively
(Table 3). If normal distributions are assumed, then the
intervals calculated by the statistical tool had the proper
coverage of 95 percent for the treated wood sampled.

Conclusions

Statistical tools for composite sampling can be used to
assist treated wood producers in estimating within-charge
variability in preservative retention. This tool can help
treaters to evaluate the risk that a customer’s sampling of a
treated wood batch would yield a retention value that is
below the required level. The tool can be adapted to
variations in sampling intensity, and the use of the tool
requires minimal extra analytical work.
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