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Abstract
Estimating yield from lumber cut-up in rip-first rough mills for material management and job costing purposes is uncertain

unless simulation models are used. To augment the toolbox for industry practitioners, a novel yield estimation model was
derived using linear least squares techniques and data derived from an orthogonal, 220–11 fractional factorial design of
resolution V.

The model estimated 450 of 512 cutting bills tested within 1 percent absolute yield. However, cutting bills that do not
adhere to the model’s framework suffer a larger estimation error. The least squares estimation model thus is a helpful tool in
ranking cutting bills that adhere to the model’s framework for their expected yield levels and facilitates the selection of part
sizes to be included in cutting bills. Further research is needed to make the model useful for a wider range of cutting bills.

In 1966, C. D. Dosker (p. 67 in Englerth and Dunmire)
contended that ‘‘[w]ood is missing out as a raw material in
thousands of usages simply because the industry has no
information on which a designer, or a user, can determine in
advance what the refining costs of wood as a raw material
will be.’’ Despite more recent acknowledgments about the
industry’s lack of ability to obtain ‘‘accurate and consis-
tent’’ (Wiedenbeck and Scheerer 1996:121) yield informa-
tion to estimate costs and to improve yield (Wiedenbeck and
Thomas 1995a), no tool that can easily and reliably obtain
this information exists today. The yield estimation matrixes
and tables established for different species by several
authors (Thomas 1965a, 1965b, 1965c; Schumann and
Englerth 1967a, 1967b; Englerth and Schumann 1969;
Dunmire 1971; Schumann 1971, 1972, 1973; Wiedenbeck
and Thomas 1995a) do not result in accurate yield estimates
(Manalan et al. 1980, Yaussy 1986, Thomas et al. 1996,
Wiedenbeck and Scheerer 1996, Buehlmann 1998, Buehl-
mann et al. 1998a, Hoff 2000). Manalan et al. (1980) found
differences of as high as 19 percent between yields
predicted using the US Department of Agriculture (USDA)
Forest Service’s FPL 118 yield tables (Englerth and
Schumann 1969) and actual yields obtained in rough mills,
while Buehlmann et al. (1998a) showed yield differences of
as high as 12 percent. At present, the only reliable way for
estimating expected yield is to use rough-mill simulation
tools (Thomas and Buehlmann 2002). However, performing

simulation is time consuming and can require extensive
manipulation of the software.

As a response to this lack of reasonable yield estimation
tools, Wiedenbeck and Thomas (1995a, 1995b) developed
new yield matrixes for rip-first and crosscut-first rough
mills. The authors divided 24 cutting bills obtained from
members of the Wood Component Manufacturers Associ-
ation into four groups: (1) short narrow, (2) short wide, (3)
long narrow, and (4) long wide. The cutting bills were
processed using either rip-first (ROMI RIP; Thomas 1995a
and 1995b) or crosscut-first (CORY; Brunner et al. 1990)
simulation software. The tests were performed for three
different grades: (1) FAS, (2) 1 Common, and (3) 2A
Common (National Hardwood Lumber Association 2007).
Yields were between a maximum of 82 percent for FAS
lumber and short-narrow or long-narrow cutting bills and
29 percent for 2A Common lumber for long-wide cutting
bills using rip-first cut-up technology. For crosscut-first
technology, simulated yield results ranged from 81 percent
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for short-wide cutting bills using FAS lumber to 39 percent
for long-wide cutting bills and 2A Common lumber.
However, the small number of cutting bills in each
category used in the study limits the usefulness of the
yield estimates obtained. Also, although the cutting bills
were clustered according to similarities in requirements
(length and width), large differences in yield persisted
within the same group, indicating that small changes in
cutting bill requirements can cause large variations in the
yield obtained. These findings are consistent with those of
Buehlmann (1998) and Buehlmann et al. (1998a), who also
found large variability in yield among relatively similar
cutting bills.

Three sources contribute to the complexity of the problem
of estimating yield: (1) cut-up system related, (2) lumber
related, and (3) cutting bill induced. The lumber yield
obtained for a given cutting bill changes depending on the
cut-up system (rip-first vs. crosscut-first) used (Hall 1978,
Harding 1991, Buehlmann et al. 1998b, 1999). Even within
the same system, different modes of operation lead to
differences in the yield achieved. The lumber used also
influences yield. Differences occur between species, grades,
and board sequences (Fortney 1994, Buehlmann et al.
1998b, 1999). Another source of influence on yield is
differing cutting bill requirements (Buehlmann et al. 1998a,
2003, 2008a, 2008b). In addition, the influences of these
various factors on yield are interrelated, thus making it hard
to develop a generally applicable model.

Existing yield estimation models do not provide the
accuracy and consistency required by industry for planning
material requirements or cost calculations (Manalan et al.
1980, Yaussy 1986, Thomas et al. 1996, Wiedenbeck and
Scheerer 1996). Therefore, the present study examined a
new approach to the problem of lumber yield estimation.
Using data from Buehlmann et al. (2008a, 2008b, 2008c,
2008d), a least squares yield estimation model was
developed and its performance reviewed.

Methods

The present study used empirical methods and statistical
analysis for the development of a yield estimation model
based on the method of least squares. Computer-based
simulation techniques were used to derive the necessary
data for least squares parameter estimation. The goal was to
create a least squares model that would estimate yield
dependent on cutting bill requirements, lumber grade, and
rough-mill set-up.

Lumber cut-up simulation

To design the lumber cut-up simulation tests, the rip-first
rough-mill yield simulator’s settings as well as the lumber
and the cutting bill used were defined to represent industrial
rough-mill operations.

Rip-first rough-mill yield simulation.—This study used
the USDA Forest Service’s ROMI-RIP 1.0 (Thomas 1995a,
1995b) rip-first rough-mill simulator to represent the cut-up
of lumber. ROMI-RIP has been shown to be a valid
representation of lumber cut-up in industrial plants (Thomas
and Buehlmann 2002). The settings used for this study were
(1) all-blades movable arbor, (2) dynamic exponential
cutting bill part prioritization (Thomas 1996b), (3) smart
and unlimited salvage operation (Anderson et al. 1992,
Thomas 1996a), (4) no random width and no random length

parts, (5) no finger-jointed or glued-up parts, (6) continuous
updating of part counts, (7) end-and-side trim set at 6 mm
on all sides, and (8) only clear-2-face (C2F) parts (Thomas
1995a, 1995b). Three replicates of each simulation were
performed (Buehlmann 1998). Unless otherwise noted,
yields are given in absolute terms and include primary and
smart salvage yield (Thomas 1995a, 1995b). The simulation
used the dynamic exponential cutting bill part prioritization
method developed by Thomas (1996b). No part substitution
was allowed; thus, the number of part sizes to be cut toward
the end of a simulation run declined as part requirements
were met.

Lumber.—No. 1 Common kiln-dried red oak lumber
contained in the digital red oak data bank created by
Gatchell et al. (1998) was used for the simulation tests. The
board size and quality distribution published by Wiedenbeck
et al. (2003) was used to create the lumber data files. To
avoid biasing the resulting yields, each cutting bill’s part
quantity was set such that it required at least 150 boards
(Buehlmann 1998, Buehlmann and Zuo 2008).

Cutting bills.—The ‘‘Buehlmann’’ cutting bill (Buehl-
mann et al. 2008c, 2008d), thought to represent cutting
bills typically used in industrial operations of the
secondary wood product industries, was used for this
study. Table 1 (the first five columns) shows the details of
this cutting bill. As described by Buehlmann et al. (2008c,
2008d), this cutting bill was designed to represent all
cutting sizes between 127 and 2,159 mm in length and
between 25 and 121 mm in width by clustering (e.g.,
grouping) individual part sizes to the 20 standard sizes
shown in Table 1. For validation of the least squares yield
estimation model, two additional sets of cutting bills were
created: (1) five cutting bills using the Buehlmann cutting
bill but uniform random part quantities (Table 1, columns 6
through 10 [labeled 1 through 5]) and (2) five cutting bills
from the literature and industry that were clustered to fit
the Buehlmann cutting bill (see Buehlmann 1998:213–215,
appendices G and H).

Statistical analysis

Least squares regression modeling techniques were used
to build a yield estimation model based on the standardized
and simplified Buehlmann cutting bill (Buehlmann et al.
2008c, 2008d).

Least squares model.—Assumptions for ordinary least
squares models include that factor levels are known
constants, the observed responses are random variables,
and the random error terms are independently, identically,
and normally distributed with a mean of zero and a common
variance (Ott 1993, Montgomery 2005). The data used for
the creation and validation of the Buehlmann cutting bill
(Buehlmann et al. 2008c, 2008d) and for the assessment of
the influence of cutting bill requirements on lumber yield
(Buehlmann et al. 2008a, 2008b) were used to estimate the
parameters of the linear least squares yield estimation
model.

The parameter estimates were attained using the General
Linear Model procedure in the Statistical Analysis System
(SAS) software package (SAS Institute 1996). The data used
were screened to find outliers. Residual plots of the fitted
model were used to reveal the presence of any lack of fit
with the model data that had previously gone undetected.
Because of the orthogonal experimental design, multi-
collinearity was nonexistent. The data were fitted to the

FOREST PRODUCTS JOURNAL Vol. 59, No. 11/12 49

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2024-12-26



following model:

Ym ¼ b0 þ
X4

i¼1

X3

j¼1

bijðLiWjÞ

þ
X4

i¼1

X3

j¼1

(
X

k 6¼i

X

l6¼j

bijklðLiWjÞðLkWjÞ

þ
X

k 6¼i

bijkjðLiWjÞðLkWjÞ

þ
X

l6¼j

bijilðLiWjÞðLiWlÞ
)
þ em ð1Þ

where Ym is the yield for the mth observation, b0 is the
intercept, bij is the parameter estimate for part size ij, LiWj is
the part quantity required by part size ij scaled from �1
(when quantity is zero) to þ1 (when quantity is maximum),
bijkl is the interaction between LiWj and LkWl, and em is the
random error.

Model validation.—The validity of the least square model
was tested by comparing the estimated yield from the model
with results obtained from simulation runs using the ROMI
RIP software (Thomas 1995a, 1995b). In particular, three
steps were used to validate the model. First, the model was
compared with the data on which it was built (i.e., the
results from the 512 cutting bills tested from the fractional
factorial design). Second, the model was tested using the
original cutting bill part sizes (Table 1), but the part
quantities were determined as a uniform randomly distrib-
uted number. This step therefore tested the model’s
accuracy when only part quantities are changed. In Table
1, column 5 shows the original quantities for the Buehlmann
cutting bill, and columns 6 through 10 display the quantities
of the five cutting bills created using a random number
generator to create required part quantities. Third, cutting
bills used in actual rough mills were used to test the

practical usefulness of the least squares model. By analyzing
these results, the possible estimation error could be
quantified and assigned to the different sources of error
for the model. The total error thus was partitioned into the
following parts:

ErrorTotal ¼ ErrorClustering þ ErrorScaling þ ErrorModel ð2Þ
where ErrorClustering is the error caused by the clustering of
parts within part size ranges (part groups), ErrorScaling is the
error caused by the necessary scaling of the part quantities
obtained from the cutting bill to fit the yield estimation
model’s framework (e.g., proportionally adjusting part
quantities to levels consistent with those of the original
model), and ErrorModel is the error caused by lack of fit of
the model.

Results

Using results from Buehlmann et al. (2008a), a least
squares model was built. Buehlmann et al. (2008a, 2008b)
performed 512 tests with three replicates per test using the
ROMI RIP simulation tool (Thomas 1995a, 1995b). The
average yield found for these tests was 65.09 percent, with a
standard deviation of 3.59 percent. The maximum yield
obtained was 70.81 percent; the minimum was 48.63
percent. Thus, a 23.22 percent yield difference exists as a
result of the different cutting bill requirements tested.

Least squares model

Based on the results from the 220–11 fractional factorial
design (Box et al. 1978) used by Buehlmann et al. (2008a,
2008b), the parameter estimates were attained using the
method of least squares. All 20 main effects (i.e., the 20
parts) were significant at the 95 percent level of significance.
Of the 190 secondary interactions, 113 were also significant
at the 95 percent level. The secondary interactions help to
explain the variability observed (Buehlmann et al. 2008a).

Table 1.—Part sizes and part quantity requirements of the original Buehlmann cutting bill and five randomly selected cutting bill
quantities.

Part no. Part name Length (mm) Width (mm)

Cutting bill (no. of pieces)

Originala 1 2 3 4 5

1 L1W1 254 38 341 44 15 126 195 173

2 L2W1 445 38 742 600 633 347 536 649

3 L3W1 699 38 1,083 726 627 443 1045 835

4 L4W1 1,207 38 608 437 607 424 330 209

5 L5W1 1,842 38 258 92 215 132 36 211

6 L1W2 254 57 379 69 166 251 204 305

7 L2W2 445 57 746 395 173 297 687 502

8 L3W2 699 57 1,200 1,013 1,196 936 107 834

9 L4W2 1,207 57 654 88 499 484 552 355

10 L5W2 1,842 57 246 206 3 85 101 49

11 L1W3 254 89 114 18 75 36 93 75

12 L2W3 445 89 254 10 242 245 156 71

13 L3W3 699 89 365 76 349 16 139 309

14 L4W3 1,207 89 221 151 165 32 99 71

15 L5W3 1,842 89 142 81 25 78 73 126

16 L1W4 254 108 123 115 72 121 47 14

17 L2W4 445 108 248 110 113 244 50 107

18 L3W4 699 108 395 365 89 172 62 273

19 L4W4 1,207 108 213 43 106 15 46 7

20 L5W4 1,842 108 100 70 63 18 24 42

a Buehlmann et al. (2008d).
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The 20 main effects were able to explain 78 percent of the
variability observed (i.e., R2 ¼ 0.78). The R2 value for the
model containing all main effects and all interactions was
0.95. However, because the coefficient of determination
(R2) can always be increased by adding additional regressor
variables (Mays 1995), adjusted R2 is considered to better
represent the ability of the model to account for the
variability observed. The adjusted R2 for the model
containing all 210 terms (20 main effects and 190 secondary
interactions) was 0.94. Forward selection at the 95 percent
level of significance created a model containing all 20 main
effects and 113 secondary interactions. The adjusted R2,
however, was approximately the same as that for the full
model, with a value of 0.95. Similar R2 values were obtained
for the backward, the forward, and the stepwise procedure
(Ott 1993). Given that the additional terms in the full model,
with all main effects and all secondary interactions
included, did not decrease the adjusted R2 markedly, the
full model was chosen as the appropriate one. Thus, the
model used was the one presented in Equation 1.

Values for the main effects ranged from þ1.60 for part
size L2W2 to �0.32 for part size L5W4, whereas values for
the secondary interactions varied from þ0.27 for the
interaction between L2W4 and L4W4 to �0.39 for the
interactions between L3W1 and L4W1 (all values highly
significant at the 99% level). The values for the 20 main
effects and the 190 secondary interactions can be found in
Buehlmann (1998, tables 5.4 and A-6). Figure 1 displays the
yield slopes of the 20 main effects. In this figure, the right
end of the slope within each part size represents the yield
contribution of a particular part size when the maximum
part quantity for this part is called for. The left end of the
slope represents the yield contribution of a part size when no
parts of this size are required (quantity of zero). Total yield
is then calculated as the sum of the individual part size’s
yield contributions. The intercept (i.e., overall average
yield) was 65.09 percent and intersects all the slopes in the
middle between zero and maximum quantity. In other
words, if all part quantities are set at 50 percent quantity,

then the model estimates the yield to be 65.09 percent
(Buehlmann 2008a).

Validation of the least squares model

The validation of the least squares model was accom-
plished through (1) using cutting bills from the original
fractional factorial design, (2) using cutting bill part
quantities set randomly, and (3) using cutting bills from
industry.

Validation based on data from the original fractional
factorial design.—Replicating the 512 test settings used in
the fractional factorial design employed to create the least
squares model, 303 of the yield results estimated by the
model had an estimation error of smaller than 0.50 percent
absolute yield, eight observations had an error of larger than
2 percent, and the maximum estimation error observed was
4.27 percent. Overall, 468 of the 512 estimated yields were
within the 95 percent confidence interval, and 44 were
outside. The average of all errors cancelled out as expected
(i.e., the average estimation error was 0.00 percent). From a
practical standpoint, the model performs very well when the
input data adhere to the framework set forth for the model.
This is supported by the fact that the model estimated the
yield of a given cutting bill within an accuracy 1 percent
absolute yield in 88 percent of the cases.

Validation using randomly determined part quantities.—
Five tests were performed to determine the accuracy of the
yield estimation model when the part quantities were no
longer either zero or maximum quantity for a given part size
but, instead, were random quantities between zero and
maximum quantity (Table 1, columns 6 through 10). The
average estimation error for these five cutting bills was 2.19
percent, with the maximum error being 2.89 percent and the
minimum error 1.62 percent (Table 2). All the estimated
yields were significantly different from the simulated yields
(a ¼ 0.05). However, the model ranked the cutting bills
successfully within an accuracy of less than half a percent
yield. In other words, even though the absolute yield result
had an average error of 2.19 percent, the model still

Figure 1.—Yield slopes for the 20 part sizes reflecting the average influence on yield of each individual part size.
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distinguished the relative yield of different cutting bills
within an accuracy of approximately half a percent yield.
The ranking, from highest to lowest, of yield results for the
five tests using simulation is test 4, test 5, test 3, test 1, and
test 2. The ranking using the yield estimation model is test 5,
test 4, test 3, test 2, and test 1. However, yields from tests 4
and 5 were only 0.03 percent different and those from tests 1
and 2 only 0.28 percent apart, while the difference to test 3
is 0.72 percent between tests 1 and 3 and 0.63 percent
between tests 3 and 5. Thus, the cutting bills were ranked
correctly into fairly narrow pockets of yield levels.

Validation using industrial cutting bills.—Finally, five
tests were performed using actual cutting bills from
industry. Table 3 shows the average results obtained from
these tests. Also shown are the standard deviations and the
maximum and minimum values observed. In Table 3, lines 1
through 4 show the results for the original simulation (line
1), the results for the simulation with parts clustered to the
20 standard sizes of the Buehlmann cutting bill (line 2), the
results for the simulation with parts clustered and scaled
(line 3), and the estimated average yield for the five cutting
bills from the least squares yield estimation model (line 4).
Lines 5 through 10 show the differences between the four
yield results presented on lines 1 through 4. Lines 11 and 12
show the number of different part sizes in the original and
clustered cutting bills.

The average yield obtained from the original cutting bills
tested, as shown in Table 3, was 67.61 percent. When the
original cutting bill parts were clustered to the standard sizes
of the Buehlmann cutting bill, the average yield decreased
by 1.82 percent, on average, for the five cutting bills tested
(Table 3, line 5). This was expected, because the average
number of parts in the cutting bill decreased from 20 (line
11) for the full cutting bill to nine (line 12) when the parts
were clustered. Yield from a cutting bill generally increases
when the number of parts to be cut increases (Buehlmann et

al. 1998a, Thomas and Brown 2003, Buehlmann et al.
2008b).

The scaling of the part quantities influenced yield by, on
average, 0.85 percent (Table 3, line 7). This result is
obtained by subtracting the average yield of the clustered
and scaled cutting bills (line 3) from the average yield of the
clustered cutting bills (line 2). This result was thought to
have a minor influence on yield, because the proportions of
the part quantity remain the same in the full cutting bill
compared to the scaled one. However, as this observation
reveals, yield does not change in a completely proportional
fashion when the part quantities for a cutting bill are
changed proportionally (i.e., scaled).

The error term caused by the least squares estimation
model, however, was the largest of all the error terms
observed. On average, for the five cutting bills used, the
model’s estimation error was 7.62 percent (Table 3, line 10).
This result is obtained when the average yield from the least
squares estimation model (line 4) is subtracted from the
average yield of the clustered and scaled simulation tests
(line 3). Equation 3 displays the breakdown of the average
total error of the five cutting bills tested:

10:30% ðErrorTotalÞ ¼ 1:82% ðErrorClusteringÞ
þ 0:85% ðErrorScalingÞ
þ 7:62% ðErrorModelÞ ð3Þ

The average total estimation error for this case was 10.30
percent (Table 3, line 8). The maximum error observed was
12.19 percent, and the minimum error was 8.01 percent.

Of the total average estimation error, 1.82 percent was
caused by the clustering of parts (18% of the total average
estimation error), another 0.85 percent can be attributed to
scaling of the part quantities (8% of the total average
estimation error), and the remaining 7.62 percent to the least
squares yield estimation model (74% of the total average

Table 2.—Individual yield (%) results and summary statistics for the five tests with random part quantities.a

Test 1 Test 2 Test 3 Test 4 Test 5 Average

Simulation 68.73 68.45 69.48 70.11 70.08 69.37

LS modelb 65.95 66.56 66.59 68.35 68.46 67.18

Difference 2.78* 1.89* 2.89** 1.76* 1.62* 2.19***

a Asterisks indicate statistical significance (* ¼ significant at 95% level, **¼ significant at 99% level, ***¼ not tested).
b LS model¼ least squares model.

Table 3.—Average yield (%) results and maximum and minimum values obtained when testing the five ‘‘real’’ cutting bills.

Test Observation Average 6 SD Max. Min.

1 Simulation 67.61 6 3.11 72.39 64.40

2 Clustered simulation 65.79 6 3.14 70.16 62.64

3 Clustered and scaled simulation 64.94 6 2.69 68.13 62.09

4 LS modela 57.31 6 3.17 60.20 52.71

5 Simulation � clustered simulation [test 1 � test 2] 1.82 6 3.12 4.48 2.28

6 Simulation � clustered and scaled simulation [test 1 � test 3] 2.68 6 3.31 5.58 2.99

7 Clustered simulation � clustered and scaled simulation [test 2 � test 3] 0.85 6 0.77 2.04 0.00

8 Simulation � LS model [test 1 � test 4] 10.30 6 1.69 12.19 8.01

9 Clustered simulation � LS model [test 2 � test 4] 8.48 6 4.32 15.26 4.85

10 Clustered and scaled simulation � LS model [test 3 � test 4] 7.62 6 4.24 14.68 3.92

11 No. of parts in cutting bill 20 6 15 36 7

12 No. of part sizes used 9 6 4 16 6

a LS model¼ least squares model.
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estimation error). Only a quarter of the total error thus can
be attributed to the clustering and scaling of the original
cutting bills to the Buehlmann cutting bill, which supports
the concept that was used to derive the Buehlmann cutting
bill (Buehlmann et al. 2008c). Three-quarters of the error
results from the yield estimation model. However, despite
the rather large estimation error, the model classified four
out of five cutting bills correctly as to their ranking of the
yield level achieved.

Discussion

The yield estimation model works well for cutting bills
whose requirements conform to the framework used in the
present study. Especially when testing cutting bills with part
quantities that are either maximum or zero quantity
according to the part quantity distribution created in
Buehlmann et al. (2008d), the estimation error was rather
small. Even when using uniform random numbers between
zero and maximum quantity to establish part quantities for
individual part sizes, the error size was still acceptable.
Moreover, even for actual cutting bills, the ranking of
cutting bills in terms of the relative yield achieved compared
to others was quite successful. The model ranked four out of
five cutting bills correctly. The model thus can be used for
testing the influence of different cutting bill requirements on
yield as compared to others. By so doing, cutting orders can
be broken down into several individual cutting bills such
that overall yield is maximized, as suggested by Buehlmann
et al. (1998a).

Attempts were undertaken to improve the accuracy of the
yield estimation model for cutting bills from industrial
operations. To establish the source of the error when
estimating the actual cutting bills from industry, a lack-of-fit
test was performed (Neter et al. 1996). Lack-of-fit tests
break the error from the model down into two components,
one being the noise from the differences in yield obtained
between the replicates of each test and the other being the
error caused by the least squares model not being perfect.
Using the data from the original 220–11 fractional factorial
design (Box et al. 1978), the squared error for each of the
1,536 data points obtained (512 tests with three replicates
each) was calculated using Equation 4:

Xk¼3

k¼1

Xj¼4

j¼1

Xi¼5

i¼1

ðYijk � ŶijÞ
2

¼
Xk¼3

k¼1

Xj¼4

j¼1

Xi¼5

i¼1

ðYijk � YijÞ
2þ
Xi¼4

i¼1

Xj¼5

j�1

ðYij � ŶijÞ
2 ð4Þ

where Yijk is the yield result of replicate ijk, Ŷij is the
estimated value ij, and Ȳij is the average yield obtained of
the three replicates.

Table 4 shows the results of the lack-of-fit test based on
the 512 tests (three replicates each). The squared error
caused by lack of fit is almost seven times larger than the
squared error caused by the noise in the system. Lack of fit
thus is a highly significant (a , 0.01) contributor to the total
error observed, as indicated by the P value of 0.0001. This
suggests that the variability of the average yield from the
three replicates is not captured perfectly by the model.

Residual analyses did not reveal a pattern that would
allow us to conclusively point to a source (or sources) of the
errors observed (Fig. 2). However, Figure 2 shows that the
larger yield estimation errors occur when either few or many
part sizes are required to be cut by the cutting bill. When 9
to 16 part sizes are required, the residual is smaller.
Relatively few residuals exceed 2 percent error. Also, one
has to be aware that the residuals are calculated from
individual observations (i.e., the replicates) and not on the
average yield of the three replicates, to which the least
squares model was fitted. When analyzing the errors of the
average yield from the three replicates versus the estimated
value of the model, only 8 of the 512 observations were
larger than 2.00 percent. Thus, despite the lack of fit of the
model, the least squares estimation model was able to
estimate the expected yield quite accurately.

Attempts to improve the accuracy of the least squares
model, as suggested by Draper and Smith (1981) and Neter
et al. (1996), by using either a higher-order polynomial
model or transformation failed. Polynomial models up to the
third order for the main effects were tested with no
significant improvement of the lack-of-fit term. Neither
was transformation of the data successful. The following
transformations were tested: natural log, exponential, square
root, logit, reciprocal, power k, and combinations of these.
However, none of these transformations reduced the lack of
fit significantly.

Future research should explore other techniques for
building an estimation model to create a simple yet reliable
tool for the industry. For example, neural networks offer a
way to deal with nonlinear data. Also, neural networks are
nonparametric models, i.e., they do not require prior
knowledge of the function being estimated. These two
features of neural networks make them a superior candidate
for solving the problem at hand. For the yield estimation
problem, nonlinearity is most likely present, and the
function that relates cutting bill characteristics to yield is
unknown. Another interesting aspect of neural networks is
that they can be trained to solve problems (Burke 1991).
Fuzzy systems are also a technique with potential. As was
observed when the errors caused by the least squares
estimation model were analyzed, in some instances a small
quantity of parts of a particular size seems to have a
disproportionally large influence on yield. Fuzzy systems
offer a way to address nonlinearity and interactions implicit
in a set of data. They do not, however, require the
specification of a nonlinear dynamic system, the acquisition
of a representative set of training samples, and the encoding
of the training samples by repeated learning cycles, as is the
case for neural networks. Fuzzy systems require only that a
‘‘rule matrix’’ be partially filled by an expert (Kosko 1992).
Future research could show if fuzzy systems would be able
to capture the nonlinear response of the dependent variable
(part yield) from different levels of the independent
variables (required part quantities). The wood industry
would benefit greatly from having a simple yet accurate

Table 4.—Results of the lack-of-fit test based on the 512 tests
(three replicates).a

Source SS df MS F P

Lack of fit 841.32 301 2.80 23.09 0.0001

Pure error 123.99 1,024 0.12

Total error 965.31 1,325 0.73

a SS¼ sum of squares, MS¼mean square.
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yield estimation tool that would allow the industry to better
estimate raw material costs and requirements before
execution. Also, such an estimation tool could be used to
compose cutting bills for maximum overall yield, thus
lowering costs and raw material requirements.

Summary and Conclusions

Linear least squares estimation of yield based on cutting
bill requirements is a viable concept provided the cutting
bills used adhere to the framework (i.e., part sizes and part
quantities) established for the model. Within this frame-
work, cutting bill yield could be estimated within 1 percent
accuracy for 88 percent of the cutting bills tested.
Furthermore, the model was able to rank actual cutting
bills in order of expected level of yield correctly in 80
percent of the cases. This allows use of the yield estimation
model for assessing cutting bills in terms of their potential
for higher yield as compared with other cutting bills.
Moreover, large cutting orders can be broken down into
several individual cutting bills such that maximum overall
yield is achieved. Also, for cutting bills with requirements
similar to the cutting bills used to create the model, more
accurate job costing can be achieved compared with other
models that do not use simulation to predict part yields
resulting from lumber cut-up.

More work needs to be done to fit the model to cutting
bills from industry, where the parts have to be clustered and
scaled to the standardized and simplified cutting bill. The
estimation error for such cutting bills was 10.30 percent, on
average, for the five cutting bills tested. The error of the
model was 7.62 percent, while clustering and scaling only
contributed 1.82 and 0.85 percent, respectively, to the total
estimation error. More work is needed to improve the

existing least squares model for more general yield
estimation purposes. Neural networks or fuzzy systems
may provide appropriate models for the general yield
estimation problem, because they offer advantages over
linear or nonlinear least squares estimation.

Acknowledgments

The authors thank Ed Thomas, USDA Forest Service, for
his assistance. The authors also thank two anonymous
reviewers for their helpful comments. This research was
supported by the National Research Initiative Competitive
Grants Program and the USDA Forest Service’s Northern
Research Station.

Literature Cited
Anderson, J. D., C. D. Brunner, and A. G. Maristany. 1992. Effect of

sawing stages on fixed-width, fixed-length dimension yield. Forest

Prod. J. 42(11/12):74–78.

Box, G. E. P., W. G. Hunter, and J. S. Hunter. 1978. Statistics for

Experimenters. John Wiley & Sons, New York. 653 pp.

Brunner, C. C., D. A. Butler, A. G. Maristany, and D. VanLeeuwen.

1990. Optimal clear-area sawing patterns for furniture and millwork

blanks. Forest Prod. J. 40(3):51–56.

Buehlmann, U. 1998. Understanding the relationship of lumber yield and

cutting bill requirements: A statistical approach. Doctoral dissertation.

Virginia Polytechnic Institute and State University, Blacksburg.

Buehlmann, U., D. E. Kline, and J. K. Wiedenbeck. 1998a. Understand-

ing the relationship of lumber yield and cutting bill requirements: A

statistical approach to the rough mill yield estimation problem.

Presented at the Annual Meeting of the Forest Products Society, June

23, 1998, Merida, Mexico.

Buehlmann, U., D. E. Kline, J. K. Wiedenbeck, and R. Noble. 2008a. The

influence of cutting bill requirements on lumber yield using a

fractional factorial design—Part I: Linearity and least squares. Wood

Fiber Sci. 40(4):599–609.

Figure 2.—Residual plot for the 512 tests (1,536 data points given three replicates per test).

54 NOVEMBER/DECEMBER 2009

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2024-12-26



Buehlmann, U., D. E. Kline, J. K. Wiedenbeck, and R. Noble. 2008b.
The influence of cutting bill requirements on lumber yield using a
fractional factorial design—Part II: Correlation and number of part
sizes. Wood Fiber Sci. 40(4):610–619.

Buehlmann, U., D. E. Kline, J. K. Wiedenbeck, and R. Noble. 2008c.
Validation of the standardized and simplified cutting bill. Wood Fiber
Sci. 40(2):202–213.

Buehlmann, U., J. K. Wiedenbeck, and D. E. Kline. 1998b. Character-
marked furniture: Potential for lumber yield increase in rip-first rough
mills. Forest Prod. J. 48(4):43–50.

Buehlmann, U., J. K. Wiedenbeck, and D. E. Kline. 1999. Character-
marked furniture: Potential for lumber yield increase in crosscut-first
rough mills. Forest Prod. J. 49(2):65–72.

Buehlmann, U., J. K. Wiedenbeck, and D. E. Kline. 2003. Influence of
cutting bill requirements on lumber yield in a rip-first rough mill.
Wood Fiber Sci. 35(2):187–200.

Buehlmann, U., J. K. Wiedenbeck, R. Noble, and D. E. Kline. 2008d.
Creating a standardized and simplified cutting bill using group
technology. Wood Fiber Sci. 40(1):29–41.

Buehlmann, U. and X. Zuo. 2008. Investigating the influence of lumber
sample subsets on simulated rough mill part yields. Forest Prod. J.
40(3):84–90.

Burke, L. I. 1991. Introduction to artificial neural systems for pattern
recognition. Comput. Oper. Res. 18(2):211–220.

Draper, N. R. and H. Smith. 1981. Applied Regression Analysis. 2nd ed.
John Wiley & Sons, New York. 709 pp.

Dunmire, D. E. 1971. Predicting yields from Appalachian red oak logs
and lumber. In: Oak Symposium Proceedings, USDA Forest Service,
Northeastern Forest Experiment Station, Upper Darby, Pennsylvania.

Englerth, G. H. and D. E. Dunmire. 1966. Programming for lumber yield.
Forest Prod. J. 16(9):67–69.

Englerth, G. H. and D. R. Schumann. 1969. Charts for calculating
dimension yields from hard maple lumber. Research Paper FPL 118.
USDA Forest Service, Forest Products Laboratory, Madison, Wiscon-
sin.

Gatchell, C. J., R. E. Thomas, and E. S. Walker. 1998. 1998 Data bank
for kiln-dried red oak lumber. Research Paper NE-245. USDA Forest
Service, Northeastern Forest Experiment Station, Radnor, Pennsylva-
nia.

Hall, S. P. 1978. The effects of one cross-cut-first line and one rip first-
line on rough mill costs and yields. Master’s thesis. Virginia
Polytechnic Institute and State University, Blacksburg.

Harding, O. V. 1991. Development of a decision software system to
compare rip-first and crosscut-first yields. Doctoral dissertation.
Mississippi State University, Mississippi State.

Hoff, K. 2000. Limitations of lumber-yield nomograms for predicting
lumber requirements. General Technical Report NE-270. USDA
Forest Service, Northeastern Forest Experiment Station, Newton
Square, Pennsylvania.

Kosko, B. 1992. Neural Networks and Fuzzy Systems. A Dynamical
System Approach to Machine Intelligence. Prentice Hall, Englewood
Cliffs, New Jersey.

Manalan, B. A., G. R. Wells, and H. A. Core. 1980. Yield deviations in
hardwood dimension stock cutting bills. Forest Prod. J. 40(1):40–42.

Mays, D. P. 1995. Class notes: Statistics in research II. Virginia
Polytechnic Institute and State University, Blacksburg.

Montgomery, D. C. 2005. Design and Analysis of Experiments. 6th ed.
John Wiley & Sons, Hoboken, New Jersey. 660 pp.

National Hardwood Lumber Association (NHLA). 2007. Rules for the
measurement and inspection of hardwood and cypress. NHLA,
Memphis, Tennessee.

Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wassermann. 1996.
Applied Linear Statistical Models. Times Mirror Higher Education
Group and Richard D. Irwin, Chicago. 1,399 pp.

Ott, R. L. 1993. An Introduction to Statistical Methods and Data
Analysis. 4th ed. Duxbury Press, Belmont, California. 1,173 pp.

SAS Institute. 1996. SAS User’s Guide. SAS Institute, Cary, North
Carolina.

Schumann, D. R. 1971. Dimension yields from Black Walnut lumber.
Research Paper FPL-162. USDA Forest Service, Forest Products
Laboratory, Madison, Wisconsin.

Schumann, D. R. 1972. Dimension yields from alder lumber. Research
Paper FPL-170. USDA Forest Service, Forest Products Laboratory,
Madison, Wisconsin.

Schumann, D. R. 1973. Dimension stock yields from lumber of three
hardwood species. Forest Prod. J. 23(3):17–21.

Schumann, D. R. and G. H. Englerth. 1967a. Yields of random width
dimension from 4/4 hard maple lumber. Research Paper 81. USDA
Forest Service, Forest Products Laboratory, Madison, Wisconsin.

Schumann, D. R. and G. H. Englerth. 1967b. Dimension stock yields of
specific width cuttings from 4/4 hard maple lumber. Research Paper
FPL-85. USDA Forest Service, Forest Products Laboratory, Madison,
Wisconsin.

Thomas, R. E. 1995a. ROMI RIP: ROugh MIll RIP-first simulator user’s
guide. General Technical Report NE-202. USDA Forest Service,
Northeastern Forest Experiment Station, Radnor, Pennsylvania.

Thomas, R. E. 1995b. ROMI RIP: ROugh MIll RIP-first simulator.
General Technical Report NE-206. USDA Forest Service, Northeast-
ern Forest Experiment Station, Radnor, Pennsylvania.

Thomas, R. E. 1996a. ROMI RIP: An analysis tool for rip-first rough-mill
operations. Forest Prod. J. 46(2):57–60.

Thomas, R. E. 1996b. Prioritizing parts from cutting bills when gang-
ripping first. Forest Prod. J. 46(10):61–66.

Thomas, R. E. and J. Brown. 2003. Determining the impact of sorting
capacity on rip-first rough mill yield. Forest Prod. J. 53(7):54–60.

Thomas, R. E. and U. Buehlmann. 2002. Validation of the ROMI-RIP
Rough Mill Simulator. Forest Prod. J. 52(2):23–29.

Thomas, R. E., J. K. Wiedenbeck, and K. Hoff. 1996. Make informed
decisions in the rough mill using new and improved computer
simulation programs. In: Proceedings of CIFAC ’96 International
Symposium; Wood Machining Institute, Berkeley, California, pp. 47–
56.

Thomas, R. J. 1965a. The yield of dimension stock: Volume 1. Technical
Report 24a. North Carolina State University, Raleigh.

Thomas, R. J. 1965b. The yield of dimension stock: Volume 2. Technical
Report 24a. North Carolina State University, Raleigh.

Thomas, R. J. 1965c. Analysis of yield of dimension stock from standard
lumber grades. Forest Prod. J. 15(7):285–288.

Wiedenbeck, J. K., J. Brown, N. Bennett, and E. Rast. 2003. Hardwood
lumber widths and grades used by the furniture and cabinet industries:
Results of a 14-mill survey. Forest Prod. J. 53(4):72–80.

Wiedenbeck, J. K. and C. Scheerer. 1996. A report on rough mill yield
practices and performance—How well are we doing? In: Twenty-
Fourth Annual Hardwood Symposium of the Hardwood Research
Council. pp. 121–128.

Wiedenbeck, J. K. and R. E. Thomas. 1995a. Don’t gamble your
fortunes—Focus on rough mill yield. Wood Wood Prod. 100(7):
148–149.

Wiedenbeck, J. K. and R. E. Thomas. 1995b. Rough mill study identifies
yield improvement opportunities. Millwork Manuf. 12(3):22–23.

Yaussy, D. A. 1986. Green lumber grade yields from factory grade logs
of three oak species. Forest Prod. J. 36(5):53–56.

FOREST PRODUCTS JOURNAL Vol. 59, No. 11/12 55

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2024-12-26



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU ([Based on 'AP_Press'] Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


